A Few Calculation Hints (extra sig figs shown)

25.0 mL of a 0.175 M KIO₃ solution is titrated to the end-point with 28.0 mL of a $Na_2S_2O_3$. What is the molar concentration of the $Na_2S_2O_3$?

Remember: 1 mol IO_3^- reacts with 6 mol $S_2O_3^{2-}$

Answer: 0.9375 M

25.0 mL of this $Na_2S_2O_3$ solution was used to titrate a solution containing 3.2 mL of the original bleach solution.

1	volume of original bleach sample (mL) titrated	3.2
2	mass, in g, of original bleach sample titrated*	3.47
3	final buret reading	
4	initial buret reading	
5	mL $Na_2S_2O_3$ added	25.0
6	mol $Na_2S_2O_3$ added	0.02344
7	mol ClO ⁻ reacted	0.01172
8	mol "available chlorine" in titrated sample	0.01172
9	grams "available chlorine" in titrated sample	0.8309
10	percent "available chlorine" in original sample	23.94
11	average percent "available chlorine" in original sample	
12	average percent, by mass, of NaOCl in original sample	25.14

*assume the density of the bleach sample is 1.084 g/mL

Hints:

**Remember: available chlorine (Cl₂) relationship: 1 mol Cl₂ produces 1 mol ClO⁻

Row 7: ? mol ClO⁻ = 0.02344 mol Na₂S₂O₃

 $2 \text{ mol } S_2 O_3{}^{2\text{-}}$ reacts with 1 mol I_2 ; 1 mol I_2 is produced when 1 mol ClO $^{\text{-}}$ reacts.

Row 8: ? mol $Cl_2 = 0.01172 \text{ mol ClO}^-$

Row 9: ? $g Cl_2 = 0.01172 mol Cl_2$

Row 10: $? g Cl_2 = 100 g liquid bleach$

Row 11: Average of Row 10 results

Row 12 (in lab this uses row 11 average): ? g NaOCl = 100 g liquid bleach