INTRODUCTION

Many commercially available liquid household bleaches are dilute solutions of the oxidizing agent, sodium hypochlorite. Bleach is used as a disinfectant because of its ability to oxidize the cell membranes of bacteria. It is also used to remove stains in clothing. The colors of many dyes and stains are due to the presence of multiple (double and triple) bonds in organic molecules. The color of the dye or stain is due to the ability of electrons in these multiple bonds to absorb and emit electromagnetic radiation in the visible region of the electromagnetic spectrum. When sodium hypochlorite in bleach comes in contact with these organic molecules, it oxidizes them, forming new products. The new products no longer have multiple bonds, so the color of the dye or stain looks whiter.

The percent "available chlorine" is used to denote the strength of a bleaching agent. It is actually the ratio of the mass of Cl₂ to the mass of the bleach mixture expressed as a percentage, even if Cl₂ is not actually present in the bleach. If sodium hypochlorite is the bleaching agent in a bleach solution, the percent "available chlorine" is determined using the following equation that shows how sodium hypochlorite can be produced from chlorine and sodium hydroxide.

\[
\text{Cl}_2(aq) + 2 \text{NaOH}(aq) \rightarrow \text{NaClO}(aq) + \text{NaCl}(aq) + \text{H}_2\text{O}(l)
\]

Suppose a bleach solution is 8.75%, by mass, sodium hypochlorite. The percent "available chlorine" could be calculated as follows:

\[
\frac{70.90 \text{ g Cl}_2}{1 \text{ mol Cl}_2} \times \frac{1 \text{ mol NaOCl}}{74.44 \text{ g NaOCl}} = 100 \text{ g soln} \times \frac{8.75 \text{ g NaOCl}}{1 \text{ mol NaOCl}} = 8.33 \text{ g Cl}_2
\]

and the percent "available chlorine" would be 8.33% Cl₂.

EXPERIMENTAL OVERVIEW

In this lab, you will use a standard potassium iodate, KIO₃, solution to standardize a sodium thiosulfate, Na₂S₂O₃, solution.

Since potassium iodate is available in its pure crystalline form, we can provide you with a standard potassium iodate solution. We don't provide you with a standard sodium thiosulfate solution because sodium thiosulfate pentahydrate, which is used to prepare the solution, absorbs water from moist air, releases water in warm, dry air, and cannot be dried (mp 48°C) without some decomposition. A solution having an approximate concentration can be prepared by weighing out and dissolving the appropriate amount of solute in water, but the exact concentration of the solution must be determined by titration.

\[
\text{IO}_3^{-}(aq) + 5 \Gamma(aq) + 6 \text{H}^{+}(aq) \rightarrow 3 \text{I}_2(aq) + 3 \text{H}_2\text{O}(l)
\]

\[
\text{I}_2(aq) + 2 \text{S}_2\text{O}_3^{2-}(aq) \rightarrow 2 \Gamma(aq) + \text{S}_4\text{O}_6^{2-}(aq)
\]
Once the sodium thiosulfate solution has been standardized, it can be used to determine the oxidizing power ("available chlorine") of a bleach sample.

\[
\text{ClO}^-(aq) + 2 \text{I}^-(aq) + \text{H}_2\text{O}(l) \rightarrow \text{I}_2(aq) + \text{Cl}^-(aq) + 2 \text{OH}^-(aq)
\]

\[
\text{I}_2(aq) + 2 \text{S}_2\text{O}_3^{2-}(aq) \rightarrow 2 \text{I}^-(aq) + \text{S}_4\text{O}_6^{2-}(aq)
\]

If you examine both of the above pairs of reactions, you should notice that iodine, I\(_2\), is generated in the first reaction of each pair and used as an **indicator** in the second reaction of each pair.

An iodine solution has to be stabilized if it is to be useful as an indicator. Iodine has a high vapor pressure (sublimes easily) and low solubility in aqueous solution. Thus, iodine would be lost as it is generated (by oxidation of iodide) yielding poor results. To get around this problem, excess iodide, \(\text{I}^-\), is added to the solution in the form of KI. The addition of excess iodide (from KI) favors the formation of the stable, soluble triiodide ion, \(\text{I}_3^-\).

\[
\text{I}_2(aq) + \text{I}^-(aq) \leftrightarrow \text{I}_3^-(aq)
\]

During the titration with the sodium thiosulfate solution, equilibrium favors the release of more iodine from triiodide until nearly all \(\text{I}_2\) is titrated. \(\text{I}_2\) at **very low concentrations** (near the endpoint of the titration) forms a blue complex with starch:

\[
\text{I}_2(aq) + \text{starch}(aq) \leftrightarrow \text{I}_2\text{starch}(aq) \\
\text{colorless} \quad \text{blue}
\]

After addition of the starch, sodium thiosulfate can continue to be used to react with the \(\text{I}_2\) to provide an accurate, visible endpoint (disappearance of blue color) for the reaction. Effectively, this reaction at the end of the titration is a shift in the equilibrium of the above equation to the left; note that as the \(\text{I}_2\) is consumed, the equilibrium shifts dropping the \(\text{I}_2\text{starch}\) concentration, causing the solution to turn from blue to colorless at the endpoint.
PROCEDURE

Each pair of students will titrate one brand of commercial liquid bleach to find the amount of “available chlorine” and the percent, by mass, of sodium hypochlorite in a commercial liquid bleach.

Part A: Standardization of Na₂S₂O₃

1. Fill a buret with the provided Na₂S₂O₃ solution.

2. Pipet 25 mL of the standard KIO₃ solution into a 125 ml Erlenmeyer flask. Add about 2 g of KI and 10 mL of 0.5 M H₂SO₄.

 \[\text{IO}_3^- (aq) + 5 \text{I}^- (aq) + 6 \text{H}^+ (aq) \rightarrow 3 \text{I}_2 (aq) + 3 \text{H}_2\text{O}(l) \]

3. Titrate the I₂ solution with the Na₂S₂O₃ solution.

 \[\text{I}_2 (aq) + 2 \text{S}_2\text{O}_3^{2-} (aq) \rightarrow 2 \text{I}^- (aq) + \text{S}_4\text{O}_6^{2-} (aq) \]

 In order to detect the endpoint of this titration you need to do a few things and make some careful observations:

 a. When performing the titration, add the Na₂S₂O₃ until the color of the solution is PALE YELLOW. At this point, you are very close to the endpoint.

 b. Once you have reached the pale yellow solution, add 2 mL of the starch solution. This will allow you to better observe the endpoint. After you have added the starch, the solution will turn a deep blue indicating that there is still I₂(aq) present in the solution. Continue the titration until the blue color completely disappears. Perform this part of the titration slowly and carefully since you are already very close to the endpoint.

4. Repeat the titration at least two more times. Do not add the KI and H₂SO₄ until you are ready to titrate that individual sample.

Part B: Analysis of a Liquid Bleach Sample

1. Pipet 10 mL of your assigned bleach sample into a 100 mL volumetric flask and dilute to the mark with water, being sure to thoroughly mix the sample. Pipet 25 mL of this diluted solution into a 250 mL Erlenmeyer flask. Add about 2 g of KI and 10 mL of 0.5 M H₂SO₄.

2. Titrate the diluted bleach sample with the sodium thiosulfate solution. Follow the same procedure you used when standardizing the sodium thiosulfate solution. Here the I₂(aq) is produced from the reaction of ClO⁻ with I⁻.

 \[\text{ClO}^- (aq) + 2 \text{I}^- (aq) + \text{H}_2\text{O}(l) \rightarrow \text{I}_2 (aq) + \text{Cl}^- (aq) + 2 \text{OH}^- (aq) \]

 \[\text{I}_2 (aq) + 2 \text{S}_2\text{O}_3^{2-} (aq) \rightarrow 2 \text{I}^- (aq) + \text{S}_4\text{O}_6^{2-} (aq) \]

3. Repeat the titration at least two more times. Do not add the KI and H₂SO₄ until you are ready to titrate that individual sample.
DATA AND ANALYSIS SHEET: BLEACH ANALYSIS

Name: __

Date _____________ Lab Partner ___________________________________

Bleach sample identification: _______________

Concentration of the prepared KIO₃ solution: ___________________

Part A: Standardization of Na₂S₂O₃

<table>
<thead>
<tr>
<th></th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>mL of KIO₃ solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol KIO₃ titrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final buret reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initial buret reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mL Na₂S₂O₃ added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol Na₂S₂O₃ added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molarity of Na₂S₂O₃ solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average molarity of Na₂S₂O₃ solution</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample calculations (Trial 1):
DATA AND ANALYSIS SHEET: BLEACH ANALYSIS

Name: __

Part B: Analysis of a Liquid Bleach Sample

<table>
<thead>
<tr>
<th></th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>volume of original bleach sample (mL) titrated</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mass, in g, of original bleach sample titrated*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final buret reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initial buret reading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mL Na$_2$S$_2$O$_3$ added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol Na$_2$S$_2$O$_3$ added</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol ClO$^-$ reacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mol "available chlorine" in titrated sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grams "available chlorine" in titrated sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>percent "available chlorine" in original sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average percent "available chlorine" in original sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average percent, by mass, of NaOCl in original sample</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*assume the density of the bleach sample is 1.084 g/mL

Sample calculations (Trial 1).

Calculation of percent, by mass, of NaOCl in your bleach sample.