Performance of a Pilot-scale Nitrifying Trickling Filter treating Aerated Lagoon Effluent

Presented by Kiersten Lee, EIT, MS Candidate
Erik Coats, P.E., Ph.D and Matt Hammer, WWT Manager

PNCWA 2010 Conference, Bend Oregon
October 26, 2010
Presentation Outline

- Project Background
- NTF Pilot Design
- Historical Trends
- Design Method
- Data Collection and Testing
- Model Comparison
- Conclusions
Project Background

- Colfax’s Population: 2,850 people
- Plant Influent: 0.360 mgd
 - Average Dry Weather Flow
- Removal Mechanisms: Aerated Lagoons, Chlorination Basin
- Current Effluent Regulations: BOD, Fecal Coliform
- Future Effluent Regulations: Ammonia-N
NH3-N Historical Trend
Lagoon 2 Effluent

\[y = 1.0962x - 2193.4 \]
Project Questions

- Are Nitrifying Trickling Filters a “good-fit” for Colfax?

- Which design model best fits the collected data?

- Based on the data collected how would our design change?
Number of Lagoons in Northwest

- **63 in Washington**
 - 27% of NPDES Permits - Municipal Lagoons
- **59 in Oregon**
- **40 in Idaho**
 - 50% of NPDES Permits - Municipal Lagoons
NTF Pilot Design

- Flow Rate
- Influent Characterization
- Design Method
- Media Selection
- Distribution System
- Oxygen Requirements
Average Dry Weather Flow

Million Gallons/Day

Year

2004 2005 2006 2007 2008 2009 2010
Flow Rate

- Anticipated Permit Season: Dry Weather Season
 - April through September
- Historically the ADWF 0.36 mgd
- Pilot influent 5% of total plant effluent
 - 12.5 gal/min
 - Low/Med hydraulic load for media type
Average Monthly Concentration 2004-2009
Lagoon 2 Effluent

Ammonia-N Concentration (mg/L)

<table>
<thead>
<tr>
<th>Month</th>
<th>LOW</th>
<th>AVG</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRIL</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MAY</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>JUNE</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>JULY</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>AUGUST</td>
<td>2</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Influent Characterization: NH$_3$

- **High NH$_3$**: 15.66 mg/L
- **Average NH$_3$**: 6.26 mg/L
- **Low NH$_3$**: 0.48 mg/L
- **Design NH$_3$ influent**: 10-25 mg/L

- Steady increase in NH$_3$ concentrations
 - Increasing approximately **1.0 mg/L** per year
Influent Characterization: BOD

- Major Concern for Biofilm Growth
 - Heterotrophic (BOD) vs. Autotrophic (NH$_3$)
 - Heterotrophs will overtake at high BOD concentrations

- Historical BOD Concentrations
 - 5.0-11.0 mg/L
 - Therefore not a major concern
Pilot Design Method

- NTF Design Methods
 - Albertson and Okey Procedure
 - Line Fit Equation
 - Metcalf and Eddy
 - Gujer and Boller Equation

- New Project Objective
 - Compare and Contrast Methods with Data
Pilot Design

- Followed: **Metcalf and Eddy guidance**

Constants and Assumptions
- Nitrification Rates
- Half-velocity Constant \((K_n =1.5\, \text{mg/L Ammonia-N}) \)
- Constant describing the decrease in rates as a function of depth \((k = 0.2m^{-1}) \)
- Transition Concentrations \((N_T) \)
Media Selection

- Requirements:
 - High Specific Surface Area (ft²/ft³)
 - Durable
 - Minimize Clogging
 - Maximize Air Flow

- Cross-Flow Media
 - Yielded positive results for NH₃ removal

- Brentwood Industries CF-1900
Distribution System

- Target Hydraulic Loading Rate (HLR)
 - Brentwood Industries
 - Metcalf Eddy Design HLR
- Translate to Upscale
- Tipping-Bucket Design
 - Mimic distribution arm
 - Even distribution- Trough System
Oxygen Requirement

- Estimated: 3.7 ft³/min Airflow
- Prevent oxygen from being the limiting factor
- Data Collected:
 - Influent: 4.0-5.0 O₂ mg/L
 - Effluent NTF: 7.0-8.0 O₂ mg/L
- Data shows sufficient oxygen
Final Design

- Two NTFs in series
- **Media Depth:** 8.0ft each
 - Total: 16.0ft
- **Width:** 4.0ft
- **Length:** 4.0ft
- **HLR:** 0.781 gpm/ft2
 - Flowrate: 12.5gpm
Data Collection

- Sampling began May 30th 2010
- Parameters Tested:
 - Temperature
 - Dissolved Oxygen
 - Ammonia-N
 - Phosphorous
 - Alkalinity
- Three Locations
 - Influent, Effluent NTF1 and Effluent NTF2
NTF Performance

NH$_3$-N (mg/L)

IN

NTF1

NTF2

Data Collection

- Removal began within **two weeks** of operation

- **Full removal occurred in three weeks**
 - 95-98% removal occurred in **NTF1**
Project Questions

- Are Nitrifying Trickling Filters a “good-fit” for Colfax?
 - YES! The design yielded FULL removal in 3 weeks.

- Which design model best fits the collected data?

- Based on the data collected how would our design change?
Vertical Testing

- Began vertical sampling in NTF1
 - Calculate nitrification rate as function of depth
 - Zero and first order kinetics
- Holes drilled every 1.5-2.0ft
- Two weeks of testing
Vertical Testing Results

- Calculated Zero and First Order Nitrification Rates
- Estimated transition concentration (2.0 mg/L)
 - Between zero and first order
- Estimated the change in removal rate as function of depth (k=0.2m⁻¹)
- Used data to compare/contrast design methods
Removal vs. Depth

Ammonia-N Concentration (mg/L)

0 2 4 6 8 10 12

Influent

2.0 ft

4.0 ft

6.0 ft

8.0 ft

Effluent

Nitrification Rates (g/m²·day)

Zero Order
7/16/10 = 0.268
7/23/10 = 0.445
7/24/10 = 0.541
7/28/10 = 0.832
8/02/10 = 0.831

Transition Concentration
2.0 mg/L

First Order
7/16/10 = 0.184
7/23/10 = 0.316
7/24/10 = 0.212
7/28/10 = 0.11
8/02/10 = 0.131
Pilot Design Methods

- Compare and Contrast Models with Collected Data
 - Albertson and Okey Procedure
 - Line Fit Equation
 - Metcalf and Eddy
 - Gujer and Boller Equation
Albertson and Okey Design

\[k_{n1} = k_{n0} \left(\frac{N_e}{N_T} \right)^{0.75} \]

- Similar to Metcalf and Eddy Model
- One Assumption: Transition Concentration (\(N_T \))
 - Transition between Zero and First Order N-Rate
 - Data collected found \(N_T = 2.0 \text{mg/L} \)
- Used the model to estimate Ammonia-N effluent concentration
Albertson and Okey Design

- Reasonable representation of data
- Model is highly dependent on zero-order Nitrification Rate

- **Over estimated** removal capacity at **high** influent concentrations
- **Under estimated** removal capacity at **low** influent concentrations
Three empirical constants

- N = Saturation Parameter (mg/L)
- $S_n = $ Bulk Liquid Ammonia-N Concentration (mg/L)
- $k = $ empirical parameter describing decrease of rate with depth (m^{-1})

Estimated Effluent Concentration
Line Fit Equation

- Under estimated removal capacity
- Not representative of Colfax NTF
- Overly conservative estimation
Metcalf and Eddy

\[n_n(N, Z) = n_{n_{\text{max}}} \left(\frac{N}{K_n + N} \right) \cdot e^{-r \cdot Z} \]

- Model used for Pilot Design
- Very similar to Albertson and Okey
- Constants: Determined by the data
 - Half-Velocity Constant \((K_n) = 2.0 \text{ mg/L}\)
 - Empirical parameter describing decrease of rate with depth \((r) = 0.2 \text{ m}^{-1}\)
- Calculated effluent concentration to compare and contrast
Metcalf and Eddy

- Omitted 7/16/10 and 7/23/10 data points
- Sensitive to low zero order removal rates
- As zero order approaches first order model does not represent data well
- Sensitive to Zero: First Order Ratio
 - As you approach 1 the model becomes unrepresentative of data
Gujer and Boller Equation

\[h = \left(\frac{1}{-k_X} \right) \cdot \ln \left[\frac{1 - k_X \cdot v_h}{a \cdot k_{\text{max}} \cdot e^{0.044(T-10)}} \left(N_i - N_o + N_s \cdot \ln \left(\frac{N_i}{N_o} \right) \right) \right] \]

- Model estimated design height **34.0ft**
 - Compared to 8.0ft, more than **triple** the height
- Similar empirical variables
 - Saturation Parameter (Ns) = **2.0mg/L**
 - Empirical parameter describing decrease of rate with depth (k) = **0.2m\(^{-1}\)**
- Overly conservative for Colfax
Project Questions

- Are Nitrifying Trickling Filters a “good-fit” for Colfax?
- Which design model best fits the collected data?
 - Simple models with few empirical constants. Metcalf & Eddy and Albertson & Okey appear to best fit, but more data needs to be collected.
 - Further illustrates the importance of PILOTS!
- Based on the data collected how would our design change?
NTF Conclusions

- Pilot has shown NTF’s are an excellent option for Colfax
- Established empirical constants
 - Half-Velocity Constant \((K_n) = 2.0 \text{ mg/L}\)
 - Transition Concentration \((N_T) = 1.5 \text{ mg/L}\)
 - Empirical parameter describing decrease of rate with depth \((r \text{ or } k) = 0.2 \text{ m}^{-1}\)
- Further Data Collection
Original Summer 2010 Plans for Colfax

- Double Hydraulic Loading Rate to 25gpm
 - NTF1 achieved 95-98% removal at 12.5 gpm
- However: Lagoons Nitrified (next slide)
 - Complete ammonia-N removal observed in Lagoons beginning in August
 - Therefore our NTFs were starved
 - Historically NOT abnormal....but complete nitrification not previously observed
Future Plans for Colfax

- Increase Hydraulic Loading Rate 25gpm
 - Provide Colfax with an operating range – Upscale
- Continue collecting data in 2011 (beginning in April)
Project Questions

- Are Nitrifying Trickling Filters a “good-fit” for Colfax?
- Which design model best fits the collected data?
- Based on the data collected how would our design change?
 - Increase the hydraulic capacity of the entire system to test NTF2.
Questions?