THE DRAINING TANK EXPERIMENT

Perform the following analysis of the data obtained from the experiment performed during class.

Data to obtain:

The internal diameter of the exit pipe	d = 3/8 in.
The length of the exit pipe	L= 62 in.
The height of water in the tank	H = 10.5 in.
The volume of water collected	∀= 950 mL
The time it took to collect the water	t= /6.8/s

- (1) Make a sketch of the showing all the components of the apparatus. Carefully draw the dimensions d, L, and H on your sketch.
- (2) Calculate the volume flow rate out of the tank from the measurements of ∀ and t. Report your answer in gallons per minute (gpm). Calculate the area average velocity in the pipe in feet per second.
- (3) Predict the volume flow rate from the tank using the **Bernoulli** equation. Apply the Bernoulli equation from the free surface of water in the tank to the exit of the pipe. What is the percent difference of the *predicted* value with the *measured* volume flow rate determined in part (2)? Discuss.
- (4) Predict the volume flow rate from the tank using the **extended Bernoulli** equation. Include all relevant head losses. What is the percent difference of the *predicted* value with the *measured* volume flow rate determined in part (2)? Discuss.

