1) Make a sketch of the fountain apparatus. Label all pertinent dimensions.
2) We will measure the height attained by the fountain in class for two different tank levels. Record these values.
3) Calculate the exit velocity at the nozzle by the Bernoulli equation.
4) Calculate the theoretical height of the water stream by applying the Bernoulli equation. Do you expect the theoretical height to be greater than, equal to, or less that the measured height? Why? Compare your theoretical results to the measured results and discuss.
5) The water stream has a certain diameter at the nozzle, $D_{\text {noz }}$. It also has a diameter at the point where it passes through the maximum height, $D_{\text {top }}$. Is $D_{\text {top }}$ greater than, equal to, or less that $\mathrm{D}_{\text {noz? }}$? Describe your reasoning on this result.
6) Work problem 5.91 as the other part of HW set 13.

FOUNTAIN EXPERIMENT - SOLUTION
FAIL 2006

$$
h=6.5 \text { incHES }
$$

2.

$$
\begin{array}{lll}
\text { EXPERIMENT } 1: & H_{1}=12^{\prime \prime} & H_{2}=14.25^{\prime \prime} \\
\text { EXPERIMENT } 2: & H_{1}=8^{\prime \prime} & H_{2}=11.5^{\prime \prime}
\end{array}
$$

3. CHOOSE DATUM AS SHOWN ABOUF. WRITE BERNOULLI EQW, FROM A TO B,

$$
\begin{aligned}
& p_{A}^{70}+\frac{1}{2} \rho V_{A}^{2 \rightarrow 0}+\gamma z_{A}=\phi B+\frac{1}{2} \rho V_{B}^{2}+\gamma_{Z_{B}}^{0} \\
& V_{B}=\sqrt{2 g\left(Z_{A}-Z_{B}\right)}=\sqrt{2 g H_{1}}
\end{aligned}
$$

EXPERIMENT $1: \quad V_{B}=8.02 \frac{\mathrm{FT}}{\mathrm{S}}$
EXPERIMENT $2: \quad V_{B}=6.55 \frac{F T}{\mathrm{~S}}$
4. APPLY BERNOULLI EQN FROM B TO C,

$$
p_{B}+\frac{1}{2} \rho V_{B}^{2}+\gamma_{Z_{B}}=p_{C}+\frac{1}{2} \rho V_{C}^{2}+\gamma Z_{C}
$$

$$
V_{B}^{2}=V_{B x}^{2}+V_{B y}^{2}
$$

horizontal velocity component OF WATER STREAM DOES NOT CHANGE, WHY?

Fountain - continued

$$
\begin{aligned}
& \text { FOUNTAIN - CONTINUED } \\
& \gamma\left(Z_{C}-Z_{B}\right)=\frac{1}{2} p\left(V_{B}^{2}-V_{c}^{2}\right)^{2} V_{B X}^{2} \\
& Z_{C}-Z_{B}=\frac{1}{2 g}\left(V_{B x}^{2}+V_{B y}^{2}-V_{B x}^{2}\right) \\
& Z_{C}-Z_{B}=\frac{1}{2 g}\left(V_{B} \sin \theta\right)^{2}
\end{aligned}
$$

EXPERIMENT 1: $\quad Z_{C}-Z_{B}=10.2 \mathrm{NJ}$ THEORY

$$
H_{2}-h=7.75 \mathrm{~N} \text { EXPERIMENT }
$$

EXPERIMENTAL RESULT 1576% OF THEORETICAL.
EXPERIMENT 2: $Z_{C}-Z_{B}=6.77 \mathrm{in}$, THEORY

$$
H_{2}-h=5.00 \mathrm{~N} \text { EXPERIMENT }
$$

EXPERIMENTAL RESULT IS 74% OF THEORETICAL, the theoretical height is greater
THAN THE MEASURED BECAUSE THE BERNOULLI EQN. NEGLECTS FRICTION. ALSO THE MEASUREMENT OF $\theta=670$ MAY BE OFF.

$$
\text { 5. } \begin{aligned}
V_{B} A_{B} & =V_{C} A_{C} \quad \text { BUT } \quad V_{C}=V_{B \times} \\
\sqrt{V_{B X}^{2}+V_{B Y}^{2}} A_{B} & =V_{B X} A_{C}
\end{aligned}
$$

$$
\Rightarrow A_{C}>A_{B} \quad \text { UNLESS } \quad V_{B Y}=0
$$

(HORIZONTAL STREAM)

$$
D_{C}>D_{B}
$$

D TOD is GREATER THAN DNOZ BECAUSE THE VElOCITY IS LESS AT THE TOP THAW AT THE NOZZLE TIP.
5.91
gIVEN:

$$
\begin{aligned}
& u=V\left(x^{3}+x y^{2}\right) \\
& v=V\left(y^{3}+y x^{2}\right) \\
& w=0
\end{aligned}
$$

V is a constant
FIND: DOES THIS FLOW FIELD SATISFY continuity?

Solution:

$$
\begin{aligned}
\text { DOES } & \begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \\
& \frac{\partial v}{\partial y}=V\left(3 x^{2}+y^{2}\right) \\
& \frac{\partial w}{\partial z}=0 \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=V\left(3 y^{2}+x^{2}\right)
\end{aligned}
\end{aligned}
$$

$\neq 0$
Continuity is not SATISFIED.

