ENGR 335

KEY WORDS FOR CH 9

surface resistance skin-friction drag form drag Couette flow inclined plane flow slot flow	boundary layer laminar boundary layer turbulent boundary layer boundary layer thickness local wall shear stress local shear stress coef. total shear stress coef. total surface resistance	turbulence model viscous sublayer logarithmic layer velocity defect layer power law model	
momentum integral method	separation boundary layer control	leading edge boundary layer trip	
	KEY WORDS FOR CH 11		
drag force	two-dimensional body	drag coefficient	

ulay loice	two-unitensional body	ulay coemclent
lift force	end effects	projected area
skin-friction drag	bluff body	
form drag	slender body	vortex shedding
pressure drag	axisymmetric body	-
drag crisis		terminal velocity
-		
angle of attack	wing tip vortices	
lift coefficient	stall	

camber

planform area

STUDY QUESTIONS

- 1. Each of the following fully developed flows have a balance between the fluid weight, the surface resistance, and/or the pressure forces: (i) flow down an inclined plane, (ii) Couette flow, and (iii) pressure driven flow between parallel plates. Which forces act in each of these flows?
- 2. Give an example of flow over an object where the skin-friction drag is negligible. Give an example of flow over an object where the form drag is negligible.
- 3. Where is the local shear stress in a boundary layer the largest? Why?
- 4. For which objects in figure 11.11 is the drag coefficient roughly constant over fairly wide range of Reynolds number? Why do you think that this is the case?
- 5. You are asked to **estimate** the force that a river exerts on a column that supports a navigation device. Describe your approach.