ENGR 335

KEY WORDS AND STUDY QUESTIONS FOR CH 10

laminar pipe flow	turbulent pipe flow	loss coefficient
Hagen-Poiseuille flow	turbulence models	minor losses
	viscous sublayer	
Reynolds number	logarithmic layer	
equivalent sand roughness	power-law model	
friction factor	relative roughness	pump curve
Darcy-Weisbach equation	hydraulically smooth regime	stall point
	transition roughness regime	free flow point
Moody diagram	completely rough regime	system curve
Colebrook correlation		
Haaland correlation		
Nikuradse correlation	positive displacement pump	entrance effects
	dynamic pump	entrance length
area average velocity	centrifugal pump	
volume flow rate	piston pump	node
discharge	gear pump	

- 1. Does the area average velocity change in the entrance region of a pipe? Why or why not?
- 2. What conservation principle is used to obtain the shear stress distribution in laminar pipe flow. Why are the terms on the right hand side of the conservation equal to zero?
- 3. Describe a piping system where it is a good approximation to neglect fitting and transition losses.
- 4. Give the two h_L that can be calculated from conservation principles. How are all the other h_L obtained?
- 5. A pump curve gives the head produced by a pump as a function of _____. How is a pump curve obtained?
- 6. How can we predict if a pipe flow will be laminar or turbulent?