Dose - Response Relationships

Principles of Environmental Toxicology
Instructor: Gregory Möller, Ph.D.
University of Idaho

Learning Objectives

- Understand the quantitative relationship between toxicant exposure and induced effects.
- Describe frequently encountered toxic effects.
- Interpret frequency (normal distribution) and dose-response curves.
- Understand threshold effects with dosage increase.

Learning Objectives, 2

- Understand effective dose, margin-of-safety and the relationship of effective vs. toxic dose.
- Examine the use of actual data for no observed effect and lowest observed effect in risk assessments.
- Summarize effective, lethal and toxic doses.
- Understand a linearized multi-stage model for non-threshold responses.

What is a Dose?

- The amount of a substance administered at one time.
- **Dosage** is the amount per unit weight of the exposed individual.
- Exposure is characterized by
 - Number of doses
 - Frequency of dosing
 - The total period of time for the exposure.

Quantifying the Dose

- Gram (g) is the standard unit but mg is typical of most exposures in toxicology.
- **Dosage**: mg (dose) / kg (bw) / day (duration)
 - mg/kg/d
- Exposures are quantified in relation to the media.
 - mg/L in water.
 - mg/kg in food.
 - mg/m³ in air.
- Variation in units common (ppm, ppb).

Key Concepts

- **Dosage - response mathematical relationship** (positive slope).
- Causal relationship.
- Observable responses.
- Statistical management of variability of individual responses.
 - Species, genetics, age, sex.
Responses (Toxic Effects)

- Inflammation.
 - Local or systemic response.
- Necrosis.
 - Cell or tissue death.
- Enzyme inhibition.
 - Biochemical pathway interruption.
 - Competitive; non-competitive.
- Biochemical uncoupling.
 - Interference with phosphate molecule synthesis (ATP)

- Lethal synthesis.
 - Toxicant incorporation into a biochemical pathway.
- Lipid peroxidation.
 - Free radical oxidation of fatty acids leading to cell death.
- Covalent binding.
 - Of electrophilic reactive metabolites to nucleophillic macromolecules.

- Receptor interaction.
 - Modification of normal biological effects mediated by the receptor.
- Immune-mediated hypersensitivity reactions.
 - Antigenic chemicals resulting in allergic reaction.
- Immuno-suppression.
 - Increased susceptibility to infectious agents and tumorigenesis.

- Neoplasia.
 - Aberrant cell division and tissue growth.
 - Neoplasms: tumorigenesis, oncogenesis.
 - Malignant neoplasms: carcinogenesis.

- Genotoxic interaction.
 - Chemical interaction with DNA possibly leading to heritable change.
 - Clastogenic (chromosomal) effects.
 - Mutagenic (base pair) effects.
- Developmental and reproductive toxicity.
 - Adverse effects on conception, and structure and function of the conceptus.

Types of Toxic Responses: Idiosyncratic

- Genetically determined sensitivity or resistance to toxicity
 - Usually lack of enzymes / factor involved in metabolism
- Primaquine (oxidative anti-malarial drug) - 10% black males / erythrocyte G-6-P dehydrogenase / hemolytic anemia
 - Glucose-6-phosphate dehydrogenase deficiency, the most common enzyme deficiency worldwide
- Nitrites - lack NADH-methemoglobin reductase / methemoglobinemia
Types of Toxic Responses: Allergic

- Immunological mediated response (memory)
- Requires sensitizing exposure
- May involve chemical/protein complex (hapten)
- Atypical dose response
 - Small doses most effective
 - Large dose tolerance
 - Ts cells (suppressor
 T lymphocytes)
- Contact dermatitis; anaphylaxis
- Pollens, pesticides, sulfur, penicillin

Dose-Response

- Quantitative analysis of incremental dose increase and occurrence of toxic end effect
- Responses follow normal frequency distribution (Gaussian)

Normal (Gaussian) Distribution

- Population representation of variability.

Normal Distribution Parameters

- Mean ± one SD = 68.3 % population
- Mean ± two SD = 95.5 % population
- Mean ± three SD = 99.7 % population

- Frequency converted to cumulative gives sigmoid curve
Observed Effects

Toxic Thresholds

Median Lethal Dose LD₅₀

Interpretation
- Often used to compare toxicity
- Only measures lethality
- Best for quantal data
- Best for acute exposure
- Tells nothing about slope
- Specific quantifiers

Shape and Slope

Comparative Toxicity

Other Thresholds: ED₉₀ – EC₅₀ – LC₁₀ – TD₅₀

- ED: effective dose
 - Pharmaceuticals
- EC: effective concentration
 - Pharmaceuticals in vivo
 - Often blood
 - Environmental toxicology
- LC: lethal concentration
 - Environmental toxicology
- TD₅₀: Lowest published toxic dose
- TC₅₀: Lowest published toxic concentration
Therapeutic Index - TI

- Ratio of dose to produce toxic effect to dose to produce desired effect
- TI = LD50/ED50
- The larger the ratio, the greater the safety (e.g. 10)
- Slope of dose response important

Effective Dose

![Effective Dose Graph]

Therapeutic Index
(TI) = Toxic Dose/Therapeutic Dose

Margin of Safety

![Margin of Safety Graph]

Margin of Safety
(MOS) = LD(01)/ED(99)

Margin of Safety - MOS

- Accounts more for slope differences
- MOS = LD1/ED99
- Neither TI or MOS works for chemicals with no beneficial effect or repeated doses

Carcinogen Risk Assessment

- Linearized Multistage Model
 - Assumes non-threshold effect.
 - Linear extrapolation through zero threshold dose from upper confidence level of lowest dose that caused cancer in animal study.
 - Analysis results in a cancer slope factor that can be used to predict cancer risk at a specific dose.

Linearized Multistage Model

![Linearized Multistage Model Graph]
Other Models for Risk Assessment

- One hit model (cancer)
 - Assumes a molecular event with cellular response.
- Multi hit model (cancer)
 - Assumes multiple events prior to cellular activation.
- Probit model
 - Linearization transformation that assumes log normal distribution.
- PB PK - Physiologically based pharmacokinetic model
 - Uses intensive pharmacokinetic and mechanistic data.

Transformation of Variables

- Allows better (simpler) analysis of data at points of interest such as LD_{50}.
- Transformation into an approximate normally distributed variable.
- Examples (r_i = dead animals, n_i = total animals)
 - Probit transformation:
 - Based on Gaussian (Bell) curve.
 - $\text{Probit} \left(\frac{r_i}{n_i} \right) = \Phi^{-1} \left(\frac{r_i}{n_i} \right)$
 - Useful in acute lethality tests.
 - Logit transformation:
 - Log odds of a quantal response.
 - $\text{Logit} \left(\frac{r_i}{n_i} \right) = \ln \left[\frac{r_i/n_i}{1 - (r_i/n_i)} \right]$
 - Weibull transformation:
 - Exponential model used in modeling multistage processes.

Probit Transformation

- Probability units → “probits”
- Convert % response to units of deviation from the mean or “normal equivalent deviations” (NEDs).
- Hence the NED for a 50% response is 0.
- “Probit” approach adds 5 to avoid negatives.

Probit Transformation, 2

<table>
<thead>
<tr>
<th>% Response</th>
<th>SD</th>
<th>NED</th>
<th>Probit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-3</td>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>-2</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>15.9</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>50.0</td>
<td>mean</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>84.1</td>
<td>+1</td>
<td>+1</td>
<td>6</td>
</tr>
<tr>
<td>97.7</td>
<td>+2</td>
<td>+2</td>
<td>7</td>
</tr>
<tr>
<td>99.9</td>
<td>+3</td>
<td>+3</td>
<td>8</td>
</tr>
</tbody>
</table>

Probit Transformation, 3

- Perform \log_{10} transformation of the dose.
 - Assumes log normal distribution.
- Produces an approximately linear relationship.
 - Allows linear regression analysis.

Log Normal Distribution

- Exponential model used in modeling multistage processes.
Probit Unit Transformation

Summary: Transformations of D-R Curve

- Normal frequency distribution
- Arithmetic dose to log dose
- Frequency data to cumulative
- Probability of response to NED
 - Standard deviations of mean
- NED to probit
 - NED + 5

Dose-Response Curve Summary

Major Parameters

- Median Lethal Dose - LD_{50}
 - Other LDs, TDs or EDs
- Slope
- Thresholds
- System saturations
- Comparative toxicity
- Risk assessment

Example: Acute & Chronic Ecotoxicology Tests

- Allow for a relative indication of toxicity.
 - LC_{50}, LD_{50}, EC_{10}
 - Assists in QSAR development.
 - WET: whole effluent toxicity.
- Often simple, inexpensive.
 - Good reproducibility.
- Useful for defining environmental quality standards.
 - Safety factor approach 1:100
- Bacteria, algae, plants, invertebrates (i.e. insects), vertebrates (i.e. rats).