

Learning Objectives

- Explore dioxins and dioxin-like compounds.
- Summarize the structural similarities of cogeners of dioxins and furans.
- Understand Toxicity Equivalency Factors (TEF) and Toxicity Equivalents (TEQ) for dioxins and related compounds.
- Summarize the known processes and toxicological endpoints of dioxin exposure.

2

Principles of Environmental Toxicolog

Learning Objectives

- Describe the controversy and data needs concerning low-level dioxin exposure.
- Describe the observed effects and major findings of animal studies with dioxin.
- Summarize the environmental and food sources of dioxins.
- Summarize the known human risk estimations for dioxins.
- Summarize the regulatory control approaches for dioxin release.

વ

The Organochlorine Legacy

- Halogenated organics have been used as synthetic pesticides and industrial compounds for since before WWII - stable
- Chlorinated compounds can be formed by combustion and natural processes in the presence of chlorine (dioxins)
- Often non-polar and lipophillic, they have the ability to be sequestered in fat tissue
- Can bioaccumulate up the food chain
- Can circulate in the "liposphere"

Principles of Environmental Toxicology

Organochlorine Compounds

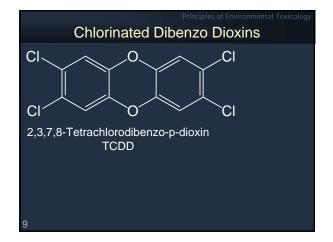
- Often related to immune dysfunction, neurological effects, cancer, endocrine disruption and other toxicological endpoints
- · Chlorinated compounds all around us
- Often the effects of low-level exposure are sub-clinical and "biomolecular" and this complicates the risk assessment for low-level exposure

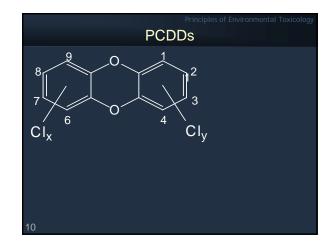
5

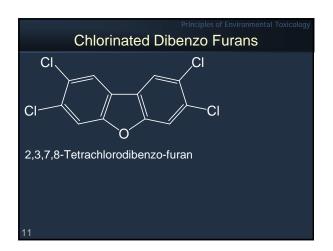
2003 NAS Institute of Medicine Analysis

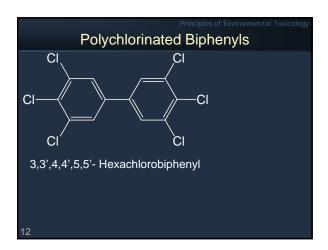
 Dioxins and Dioxin-like Compounds in the Food Supply (2003)

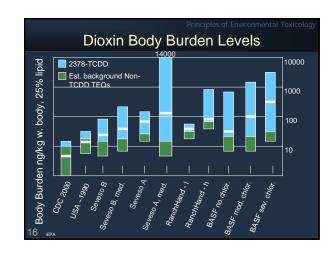
- http://newton.nap.edu/catalog/10763.html




6


1

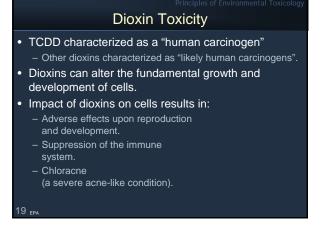

Principles of Environmental Toxicology Dioxins Widespread, low-level contaminants in animal feeds and the human food supply. Animal fats are the primary vector of exposure. Dioxins metabolize slowly and accumulate in body fat over a lifetime. Data show decline in levels. Endocrine disruption is a concern. Exposure and children's health and development. High public priority to reduce dioxin levels in girls and young women.


Principles of Environmental Toxicology Background

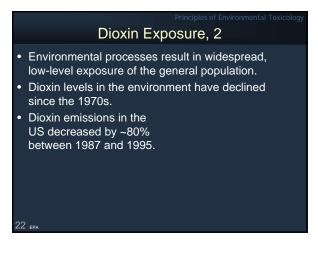
- 75 dioxin cogeners and 135 dibenzofuran congeners.
- In general, CDD's and CDF's are present in human adipose tissue and fish and bird samples at a
 - sub $\mu g/kg$ level.
 - Many of these being the less or non-toxic isomers.
- In general, relative toxicity:
- CCD > CDF >> PCB >> CN

13 Banbury

Combining Risks from Dioxins Dioxins share a "common mechanism of toxicity". Toxicity Equivalency Factors (TEF) compare the toxicity of different dioxins. TEF are expressed in terms of Toxicity Equivalents (TEQ). TEQ is the amount of TCDD it would take to equal the combined toxic effect of all the dioxins found in that mixture.


The TEF Scheme for TEQ _{DF}			
Furan (F) congener	TEF	Dioxin (D) congener	TEF
2,3,7,8-TCDF	0.1	2,3,7,8-TCDD	1.0
1,2,3,7,8-PeCDF	0.05	1,2,3,7,8-PeCDD	0.5
2,3,4,7,8-PeCDF	0.5	1,2,3,4,7,8-HxCDD	0.1
1,2,3,4,7,8-HxCDF	0.1	1,2,3,6,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDF	0.1	1,2,3,7,8,9-HxCDD	0.1
1,2,3,7,8,9-HxCDF	0.1	1,2,3,4,6,7,8-HpCDD	.01
2,3,4,6,7,8-HxCDF	0.1	1,2,3,4,6,7,8,9-OCDD	.001
1,2,3,4,6,7,8-HpCDF	0.01		
1,2,3,4,7,8,9-HpCDF	0.01		
1,2,3,4,6,7,8,9-OCDF	0.001		
15 _{epa}			

Princip	
Dioxin Exposure Cas	e Studies
 Love Canal (1940s-1950s). 	
 Hazardous waste landfill release. 	and the second second
• Times Beach (pre-1982).	
 Chemical mix used to oil streets. 	
 Agent Orange. 	AP
 Vietnam "Operation Ranch Hand". 	
 Seveso, Italy (1976). 	
 2,4,5 Trichlorophenol industrial accident. 	
BASE/IR (1953, other)	


 Chlorinated herbicide manufacturing workers.

Backgrou	Princip Ind Serum, U	les of Environmental Toxicology US 95-97
	TEQ_{DFP} (pg/g lipid)	2,3,7,8-TCDD (pg/g lipid)
Median	18.7	1.9
Mean	22.1	2.1
95 th Percentile	38.8	4.2
Adult background inte estimate 70 pg TEQ _D		
18 epa		

Dioxin Exposure Dioxins are highly persistent and can bioaccumulate. 95% of dioxin intake for a typical person comes through dietary intake of animal fats. Low exposure: Breathing air containing trace amount of dioxins. Ingestion of soil containing dioxins. Absorption through skin contacting air, soil, or water containing minute levels.

General Population Body Burden

• US CDD/CDF range = 8.5 pg TEQ/g lipid to 50.0 pg TEQ_{DF-WHO98}/g lipid

• Mean 21.1 pg TEQ_{DF-WHO98}/g lipid

General Population Intake

US CDD/CDF estimate 41 pg TEQ_{DF-WHO98}/d or 0.59 pg TEQ_{DF-WHO98}/kg/d

US CDD/CDF/PCB estimate 65 pg TEQ_{DF-WHO98}/d or 1 pg TEQ_{DF-WHO98}/kg/d

Children: US CDD/CDF estimate 54 pg TEQ_{DF-WHO98}/d or 3.6 pg TEQ_{DF-WHO98}/kg/d

Decrease with age

5 compounds = 70% load

TCDD, PeCCD, PeCDF

HxCDF, PCB 126

Dioxin Effects in Humans

- · The amount of dioxin found in the tissues of the general human population (Body Burden) approaches (w/in a factor of 10) the levels at which adverse effects occur.
- · Despite which, there is no clear indication of increased disease in the general population.
 - Limitation of current data and scientific tools.

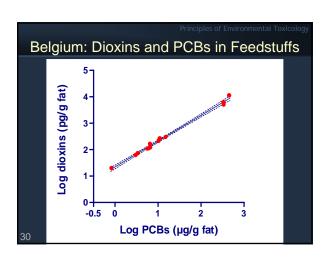
Dioxin Effects in Humans

- 1 in 100 to 1 in 1,000 increased chance of experiencing cancer related to dioxin exposure in the general population.
- Cancer risk in 2000 analysis indicates about 10-fold higher chance than estimated in 1994 reassessment.

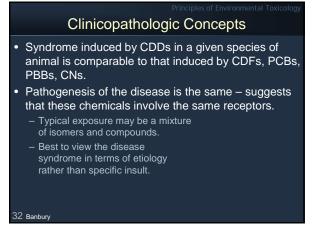
Children and Concern Groups

- Fetuses, infants, and children may be more sensitive to dioxin exposure because of rapid growth.
 - Data on risks to children is limited.
- · U.S. Air Force personnel exposed to Agent Orange during the Vietnam War.
- Other populations have experienced elevated exposure from:
 - Industrial accidents.
 - Unusually high consumption of fish, meat and dairy products.

Dioxin Effect Controversy


- Enzyme induction and indicators of altered cellular function may not clearly indicate toxic response.
- Changes in biology and biochemistry from low-exposure:
 - Adaptive
 - (w/ little or no adverse impact).
 - Adverse(?).


28 _{EPA}


Case Study: Belgium 1999

- Transformer oil added to animal feed at feed mills.
- · Poultry: reduction in egg hatchability, reduced weight gain, an increased mortality, edema, ataxia.
- · PCBs and dioxins in animals products.
- 60,000,000 kg of animals destroyed.
- Meat product embargo.

Clinicopathologic Syndrome
Varies from animal species to animal species.
Skin of primates, rabbits (ears), cattle & some mice show characteristic follicular dermatitis.
 Chloracne: visible and reversible lesion.
 Livers of chickens, rabbits (mice) show necrotic response of lethal severity.
 Guinea pigs, cattle, NH primates: enlarged liver, epithilial hyperplasia of bile duct/gall bladder.
Some animals show epithilial lesions: GIT, renal.
33

	Principles of Environmental Tox Clinicopathologic Syndrome
•	The one organ that uniformly shows lesions in all species is the thymus. Often weighs 25% less in lethal intoxications.
	Site of early life formation of lymphocytes and a site of antibod production.
•	Severe intoxication in birds accompanied by fluid accumulation (chick edema).
•	Interesting feature:
	 Total dose of TCDD required to produce disease is less if the dose is spread over time compared to a single dose.
34	<u> </u>

	Principles of Environmental Toxico
Specie	LD ₅₀ TCDD (μg/kg)
Pig (most sensitive)	0.6
Avian (very sensitive)	No exact
Rat	22-45
C57bl Mice	114-284
Monkey R.	<70
Rabbit N.Z.	115
Hamsters	5050

	Observations
r	n general, young animals and females may be more susceptible to intoxication (field). – Not observed in lab studies.
i	Neonatal death, poor survival of young, female nfertility and reproductive failure are indicators of ield problems.
t a	At lethal dose levels, the ime between exposure and death is unusually long. — Guinea pig, rat, mice: 2-3 wks. — Monkeys: 6 wks.
26 F	Banhury

Observations • Except for animals with severe liver necrosis (chickens, rabbits), cause of death not usually attributed to a specific organ or system pathology. • In general, animals exhibit wasting disease. – Resembles starvation, anorexia. • In environmental exposures, the disease is complicated by opportunistic infection.

Metabolism of 1CDD	
 Dog and rat studies. Major metabolites are hydroxylated compounds. Most is eliminated as parent compound in feces. Chronic rodent bioassays, life-term and short duration have addressed the issues of tumor initiation, promotion, co-carcinogenesis, DNA interaction, mutagenesis and clastogenesis. 	anbury
38	

Ca	arcinogenic	city - Mutagenicity
		, ,
Animal	Dosage	Response Banbury
	TCDD	
	μg/kg/d	
Rat SD	0.1	Hepatocellular, squam. carc.
Rat SD	0.01	Hepatocellular nodules
Rat SD	0.001	No ↑ in tumors
Mouse B6	0.3	Hepatocellular, thyroid tumors
Mouse B6	0.07	Hepatocellular tumors
Mouse B6	0.03	No ↑ in tumors
39		

Principles of Environmental Toxicology
Suggested Mechanisms
Toxicity and carcinogenicity. Alteration of cell membrane function and cell-cell communication. Effect on Vitamin A function. Membrane lipid peroxidation. Thyroid hormones. Hormonal alterations. DNA modifications.
40 Banbury

Principles of Environmental Toxicology Hepatotoxicity Mechanisms
 Experiments suggest O₂• (superoxide) formation and initiation of peroxidation by Fe²⁺. Progressive liver damage.
TCDD inhibits hepatic Se-GSHpx and reduced glutathione.
 Good correlation of GSHpx activity and survival. Lipid peroxidation endpoint.
41 Banbury

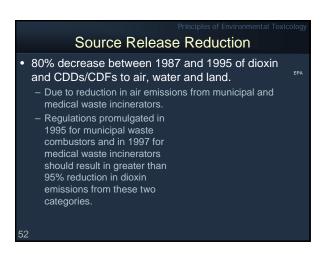
	Dioxin: Early Molecular Events
1.	Diffusion into the cell.
2.	Binding of the AhR protein.
3.	Dissociation from hsp90.
4.	Active translocation from cytoplasm.
5.	Association with Arnt protein.
6.	Conversion of liganded receptor heteromer to enhancer DNA.
7.	Enhancer activation.
8.	Altered DNA configuration.
9.	Histone modification.
10.	Recruitment of additional protein.
11.	Nucleosome disruption.
12.	Increased accessibility of transcriptional promoter.
13.	Binding of transcription factors to promoter.
424.	Enhanced mRNA and protein synthesis.

Principles of Environmental Toxicolog Effects of TCDD and Related Compounds						
Effect	Human	Monkey	Rat	Fish	Avian wildlife	Marine mammals
Enzyme induction	+	+	+	+	+	+
Acute lethality	0	+	+	+	+	+
Wasting syndrome		+	+	+	+	+
Teratogenesis, mortality	+/-	+	+	+	+	+
Endocrine effects	+/-	+	+	+	+	+
Immunotoxicity	+/-	+	+	+		+
Carcinogenicity	+/-		+	+		
Neurotoxicity	+	+	+			
Porphyria	+	0	+			
Hepatotoxicity	+	+	+	+	+	+


	Environmental Source Types
•	Combustion and incineration sources.
•	Metals smelting, refining and processing.
•	Chemical manufacturing/processing.
•	Reservoir sources (e.g. soils).
•	Biological and photochemical processes.
•	Significant regulatory pressure to limit release.

44 _{EPA}

TEO E	Poloo		nvironmental To	xic
TEQ _{DF} F			US	
(g TEQ/yr) Incineration	1995	1987		
Municipal waste	1250	8877		
Medical waste/path.	488	2590		
Forest, brush, and straw fires	208	170		
Cement kilns (HW)	156	118		
Sewage sludge	14.8	6.1		
Crematoria	9.1	5.5		
Hazardous	5.8	5		
Tire combustion	0.11	0.11		
Cigarettes	8.0	1		



TEO Rel		iples of Environmen			
TEQ _{DF} Releases – Land _{US}					
Releases (g TE	Q/yr) to lar	nd			
	1995	1987	EPA		
Bleached wood pulp and paper mill sludge	1.4	14.1			
Municipal wastewater treatment sludge	76.6	76.6			
Commercially marketed sewage sludge	2.6	2.6			
2,4-Dichlorophenoxy acetic acid	28.9	33.4			
Total quantified releases 49 to land	110	127			

	Drincip	alos of Environmental Toxi	icology	
Principles of Environmental Toxicology TEQ _{DF} Releases — Overall _{US}				
	1995	1987		
			EPA	
Overall quantified releases to the open and circulating environment (g TEQ/yr)	2830	13560		

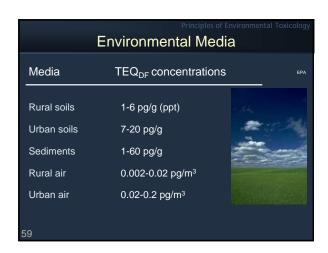
Unquantified	Principles of Environmental Toxicology			
Unquantified Sources				
Category	Unquantified sources			
Combustion sources	Uncontrolled combustion of PCBs			
	Agricultural burning			
Metal smelting and refining	Primary Al, Mg, Ni			
Chemical Manufacturing	Mono- to tetrachlorophenols			
	Pentachlorophenol			
	Chlorobenzenes			
	Chlorobiphenyls (leaks/spills)			
	Dioxazine dyes and pigments			
	2,4-D			
	Tall oil-based liquid soaps			
Biological and photochemical processes	Composting			
Reservoir sources (runoff, erosion)	Air, Sediments, Water, Biota			
51 _{EPA}	PCP-treated wood			

Control Efforts for Air • The Clean Air Act (CAA) and its amendments requires emission limits based on "maximum achievable control technology" (MACT). - Changes in 1995 for municipal waste and 1997 for medical waste incinerators should result in greater than 95% reduction in dioxin emissions. • CAA and the Resources Conservation and Recovery Act (RCRA) authorize the regulation emissions from facilities that burn HW.

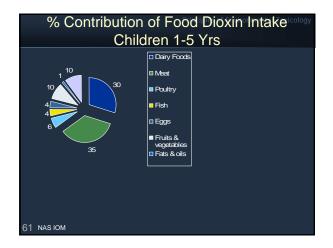
Control Efforts for Water

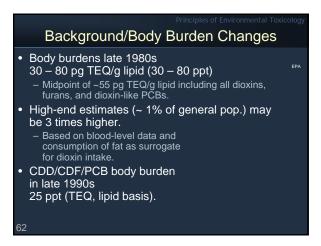
• The Clean Water Act (CWA) manages releases through risk-based and technology-based tools.

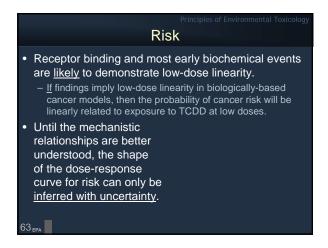
– 1984 ambient water quality for 2,3,7,8-TCDD – a guidance for state water quality criteria.


• National Pollutant Discharge Elimination System (NPDES) regulates discharge based on state ambient water quality.

Control Efforts for Water, 2 • Pulp and paper facilities were the largest known industrial dischargers of dioxin into water. – 1998 CWA guidelines will reduce dioxin discharge from pulp and paper facilities by at least 96%. • NPDES will places stringent performance requirements through combination of technology-based, health-based and state water quality standards.




Control Efforts for Land Superfund and RCRA Corrective Action programs for dioxin (Times Beach and Love Canal). Hazardous Waste Identification and Disposal Rules under RCRA designed to prevent future contamination. The Toxic Substance Control Act (TSCA) authorizes restricted use of dioxin – contaminated pulp and paper sludge. 1999 regulations limit dioxin content of cement kilns and sludge from POST facilities when by-product material is used as soil additives.


Principles of Environmental Toxicology Control Efforts for Products
The Federal Insecticide Fungicide and Rodenticide Act (FIFRA) and TSCA authorizes control or elimination of certain chemicals. – 2,4,5-T and pentachlorophenol (PCP).

Principles of Environmental Toxicology Estimate Levels in Food				
Food type	Total (pg TEQ _{DF} /g fresh weight)	EPA		
Beef	0.29			
Pork	0.31			
Eggs	0.13			
Milk	0.047			
Dairy products	0.18			
Marine fish	0.61			
Freshwater fish	2.4			
Marine shellfish	0.83			
Vegetable fats	0.093			
60 ^{Water}	NA			

