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Abstract: Statistical techniques commonly used in fish passage research fail to adequately quantify delays incurred at
obstacles, or the effects of modifications to those obstacles on passage rates. Analyses of telemetry data describing
these effects can be misleading, particularly when passage route of some individuals is not established (e.g., because of
mortality, tag failure, passage through unmonitored or alternate routes, etc.). Here, we demonstrate how event-time
analysis, better known as survival analysis, can be used to quantify passage rates for any study that allows tracking of
individuals through time, even when some individuals fail to pass the route or obstacle in question. We review two of
the primary methods of event-time analysis (parametric and Cox’s proportional hazards regression analyses) and use
them in combination with logistic regression to provide unbiased estimates of delay incurred at a hydroelectric facility,
as well as insights on factors affecting both rates of passage and route selection. Passage rate increased with increased
depth of a surface bypass sluice gate and, among fish that passed through the turbines, with turbine flow. The data fur-
ther indicate that risk of turbine passage increased with both delay and turbine flow.

Résumé : Les techniques statistiques couramment utilisées pour étudier le passage des poissons ne réussissent pas à
quantifier adéquatement les délais face aux obstacles, ni à évaluer les effets des modifications de ces obstacles sur les
taux de passage. Les analyses de données de télémétrie qui décrivent ces effets peuvent être faussées, particulièrement
lorsque la voie de passage de certains individus ne peut être déterminée (e.g., à cause de la mortalité, de la perte des
étiquettes, du passage par des routes non surveillées ou des routes de rechange, etc.). Nous démontrons comment
l’analyse temporelle des événements (« event-time analysis »), mieux connue sous le nom d’analyse de survie, peut
servir à quantifier les taux de passage dans toute étude qui permet de suivre des individus dans le temps, même
lorsque certains ne suivent pas la route ou ne traversent pas les obstacles en question. Nous examinons deux des prin-
cipales méthodes de l’analyse temporelle des événements (l’analyse de régression paramétrique et l’analyse de régres-
sion aléatoire proportionnelle de Cox) et les utilisons en combinaison avec la régression logistique pour obtenir des
estimations non biaisées des délais encourus à un ouvrage hydroélectrique, de même que des informations sur les fac-
teurs qui affectent à la fois les taux de passage et le choix de route. Les taux de passage augmentent en relation avec
la profondeur d’une vanne de dérivation de surface et, chez les poissons qui passent par les turbines, en relation avec
le débit de la turbine. Nos données montrent, de plus, que le risque associé au passage dans la turbine augmente tant
avec le délai devant l’obstacle qu’avec le débit de la turbine.
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Introduction

A growing body of research shows that delays to the mi-
grations of anadromous fishes can cause dramatic reductions
in adult recruitment and spawning success. For many spe-
cies, the ability of juveniles to osmoregulate in both salt and
fresh water (a prerequisite for successful transition to the
marine environment) can only be maintained for a brief pe-
riod (McCormick et al. 1998; Whalen et al. 1999). Similar
time-dependent effects have been shown for thermal toler-
ance (Zydlewski and McCormick 1997a) and predation risk

(Hargreaves 1994; Venditti et al. 2000). Failure of migrants
to reach the marine environment within the resulting “smolt
window” reduces likelihood of survival. Adult migrants are
also vulnerable to delay: freshwater spawning migrations are
often powered exclusively by energy stores acquired at sea,
and growing evidence suggests there is a trade-off between
depletion of these stores and reproductive success (Glebe
and Leggett 1981; Leonard and McCormick 1999; Hinch
and Bratty 2000).

Concern over the delays incurred at dams and similar bar-
riers has caused the U.S. National Marine Fisheries Service
(NMFS) to call for operational changes at hydroelectric fa-
cilities to minimize this effect (NMFS 2000). How the ef-
fects of these changes should be quantified, however, remains
unclear. Migration rate is affected by numerous environmen-
tal variables including flow, temperature, photoperiod, and
previous experience of the migrants (Zabel and Anderson
1997; McCormick et al. 1998). Although data from various
forms of telemetry can provide detailed information on mi-
gratory behavior near obstacles, current analytical methods
fail to make full use of incomplete data, i.e., data from indi-
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viduals that experience any form of tag failure, suffer preda-
tion, pass via undetermined routes, routes other than the
route of interest, or fail to pass during the course of the
study. Typically, such “censored” individuals are removed
from the study and only those that pass are compared; alter-
natively, some analyses might require an assumption that the
fish passed through one route or the other. Either approach
introduces bias into the analysis and casts suspicion on the
results (e.g., Nettles and Gloss 1987; Wilson et al. 1991;
Johnson et al. 2000).

A further deficiency in standard analytical techniques is
that they often fail to adequately account for covariates that
change over time. Many variables that could potentially in-
fluence passage rate may not be constant during the pre-
passage period, and depending on delay duration, fish may
be exposed to multiple levels of these covariates.

In this paper, we demonstrate how the problems of incom-
plete data, alternate passage routes, and time-varying covariates
can be overcome using statistical methods best known for
their applications in biomedical research. Collectively known
as “survival analysis” (Cox and Oakes 1984; Lee 1992;
Hosmer and Lemeshow 1999), these methods were devel-
oped to describe the timing of events, incorporating data
from individuals that are removed from studies or whose fate
was not determined before ending a study. Although the
name implies application to survival studies, we use it here
to quantify passage rate with no direct inference on survival.
Thus, to avoid confusion with actual survival studies, we
will use the synonym “event-time analysis”.

Although these methods have broad application in ecolog-
ical studies (e.g., Chambers and Leggett 1989) and have
been used to estimate survival during the course of migra-
tion (Skalski et al. 1993; Lowther and Skalski 1997), they
have yet to be applied to behavioral components of fish pas-
sage. Here, we present a novel application of event-time
analysis and demonstrate its usefulness by quantifying ef-
fects of modifications at a hydroelectric facility on rates of
passage. Results of a radiotelemetry study of migrating At-
lantic salmon (Salmo salar) smolts were selected to demon-
strate this application.

Methods

Rationale and techniques of event-time analysis
Because the theory and application of event-time analysis

are unfamiliar to most fish passage researchers, we present a
brief overview of event-time analysis techniques in the fol-
lowing subsections. Interested readers should consult Lee
(1992), Allison (1995), and Hosmer and Lemeshow (1999)
for more complete details. In each technique, a binary vari-
able, δ, is used to denote whether the individual’s passage
time was observed (δ = 1) or not (censored observations; δ =
0). This allows calculation of probability functions without
attributing passage routes or times to censored individuals.
The only limitation to the use of censored data is that cen-
soring must not be informative, i.e., covariate effects should
be the same for censored and uncensored observations.

In addition to censoring, the feature that best distinguishes
event-time analysis from other parametric and nonparametric
methods is its use of the hazard and survivorship functions
(h(t) and S(t), respectively). The hazard function is the in-

stantaneous rate of passage for those individuals that have
not yet passed, i.e.,

(1) h(t) = lim [
∆ 0t→

P{an individual remaining

at time passing in the interval )}t t t t( , ]+ ∆ ∆t

The survivorship function is the complement of the cumula-
tive distribution function and indicates the proportion of in-
dividuals remaining at time t.

(2) S(t) = P{an individual passing after time t}

These relate to the more familiar probability density func-
tion (PDF, or f (t))

(3) f(t) = lim[ {
∆ 0t→

P an individual passing

in the interval )}( , ]t t t+ ∆ ∆t

in that f (t) = h(t) × S(t) (Lee 1992).
The utility of the hazard and survivorship functions be-

comes apparent when we consider the effects of censoring.
Censored data preclude the usual approach of estimating
mean and variance of passage times. The hazard function
can be easily estimated, however, by dividing numbers of
fish passing in an interval by the number of fish available to
pass. Likewise, because censoring indicates that the fish has
not yet passed, the last extant observation still contributes to
the calculation of the survivorship function (see below).

The most straightforward approach to describing passage
times and their associated probability functions is to con-
struct a life table. This is done by breaking time down into
meaningful, but not necessarily equal, intervals and calculat-
ing estimates of the above probability functions. Lee (1992)
provides a clear and detailed description of this procedure.
An alternative approach, developed by Kaplan and Meier
(1958), is helpful when plotting data. Here, instead of being
fixed, intervals are defined by the actual occurrence of events.
At each time that a passage event occurs, the value of the
survivorship function is estimated based on the cumulative
product of the conditional proportion passing:

(4) � ( )
:
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where pi of ni available individuals pass at each time ti. Note
that the ti’s refer only to uncensored observations, but both
censored and complete observations are included in the de-
nominator (ni, or the risk set) as long as they remain avail-
able to pass. Life-table methods are best for constructing
tables, Kaplan–Meier curves are best for plotting data. Non-
parametric tests and predictions can be generated based on
either life-table or Kaplan–Meier methods with similar re-
sults. However, when multiple covariate effects are present,
these tests may be inappropriate, so we avoid them here.

Parametric models for event-time data with censoring
The influence of covariates on passage rate, as well as the

shape of probability functions, can often be described by fit-
ting models to the data and testing for fit. Covariate effects
can be readily expressed as a linear model. An intuitive form
is the accelerated failure time (AFT) model (Allison 1995;
Hosmer and Lemeshow 1999):
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(5) ln(T) = β β0 1+ x1 + … + βkxk + ε

where passage time T is a random variable conditional on
covariates x1,…,k. The disturbance component ε determines
the shape of the error distribution and thus the spread of the
quantile estimates of passage time. Note that the “failure”
term in AFT carries over from the survival analysis literature
but refers here to passage events. Using this approach, co-
variate effects are multiplicative: a given quantile of passage
time T changes by a factor of eβ j , or increases by 100(eβ j −1)
percent per unit increase in the covariate.

Most texts and computer programs fit these models using
maximum likelihood (ML) estimation (Lee 1992). The like-
lihood, L, of a model is described by

(6) L = [ ( )] [ ( )]
i

n

i i i if t S ti i

=

−∏
1

1δ δ

where fi(ti) and Si(ti) are, respectively, the estimated PDF and
survivorship functions of the fitted distribution for each indi-
vidual, contingent on model covariates, and δi = 0 for censored
and 1 for uncensored observations. The likelihood function is
maximized with respect to model covariates and parameters,
usually by applying some version of the Newton–Raphson al-
gorithm (Lee 1992).

The presence of censored data complicates the evaluation
of model fit. Although Allison (1995) and Hosmer and
Lemeshow (1999) provide a method for calculating a gener-
alized R2 statistic, both texts caution against its use, because
its value is affected by the proportion of censored observa-
tions in the data set; indeed, no statistic can be calculated
that quantifies the proportion of variance in a data set that is
accounted for by a given model, because the variance of
censored observations is not known. Therefore, alternative
methods must be used for evaluating model fit. The log-
likelihoods of ML-generated models can be used to test for
differences in fit between nested distributions and models: a
significant likelihood ratio indicates superior fit of the model
with the greater likelihood. Akaike’s information criterion
(AIC) can also be used to identify the best distribution or
model and has the advantage of not requiring nesting (see
Allison (1995) for a clear discussion of nested distributions
and Burnham and Anderson (1998) for the theory and appli-
cation of AIC).

A more general method for numerically testing whether
the data follow a particular distribution was proposed by
Hollander and Proschan (1979), summarized in Lee (1992):
a statistic following the standard normal distribution is cal-
culated by comparing predicted and observed values of the
survivorship function. In a related approach, Cox–Snell re-
siduals (defined as ei = –ln(S(ti|xi)), where xi is the vector of
covariate values for individual i and S(ti) is the estimated
probability of that individual remaining until time t, based
on the fitted model) are plotted against –ln(S′(ti)), where
S′(ti) is the Kaplan–Meier estimate of the survivorship func-
tion. If the model adequately describes the data, then this
plot yields a straight line with a slope of unity (Allison
1995).

Cox’s proportional hazards regression
More often than not, knowledge of underlying distribu-

tions is limited, or the complexity of the shape of those dis-
tributions precludes predictive modeling. Furthermore, the
presence of covariates that change over time can complicate
modeling efforts and may not even be possible using many
standard software packages. The effect of various treatments
on the hazard function can still be estimated, however, using
a semiparametric, proportional hazards regression approach
first described by Cox (1972). This model is based on the
premise that the log of the hazard is a linear function of k
covariates; the relationship between the hazard functions of
two treatment groups i and j is described by

(7) ln(hi(t) – hj(t)) = β1(xi1 – xj1)

+ β2(xi2 – xj2) + … + βk(xik – xjk)

The effects of covariates on the ratio of the two hazards are
estimated by the coefficients β1,…, βk. This approach is sim-
ilar to that described above for the parametric regression
model, with the important distinction that where the para-
metric regression uses ML to model the effects of covariates
on the actual time of the event, Cox’s proportional hazards
regression uses partial likelihood (LP) to describe their ef-
fects on the rate at which the event occurs. A general expres-
sion for the LP of a proportional hazards model with fixed
(i.e., not time-varying) covariates is

(8) LP
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where R(ti) constitutes the risk set, all individuals available
to pass at time ti (equivalent to ni in eq. 4) and x� refers to
the vector product of the covariates and their coefficients, ei-
ther for the individual passing (i) or for each member of the
risk set (j). As with ML estimation, the LP is then maxi-
mized with respect to � using the Newton–Raphson algo-
rithm. Note that by constructing the denominator in this way
and including the censoring indicator δi, censored data are
included in the analysis and contribute to the denominator
until the last extant observation.

Because the LP is based on the rank of time, rather than its
actual value, combined, relative covariate effects on the haz-
ard function can be tested without requiring the underlying
probability to follow a particular distribution. In addition to
significance, software packages may generate estimates of
coefficients in eq. 7; their interpretation is simplified by us-
ing an alternate quantity, the hazard ratio, which equals eβ j

and indicates the proportional change in hazard per unit
change in the covariate.

Another attractive feature of proportional hazards regres-
sion is that because it makes no assumptions about the un-
derlying hazard function, inclusion of covariates that change
over time is a simple process that is included as a standard
feature in many software packages. Hazards are calculated at
each event time based on the current risk set, regardless of
whether individuals had previously been exposed to a differ-
ent set of covariate values.
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Although Cox’s proportional hazards regression is not fully
parametric, it still requires certain assumptions about the
data, primarily that the effects of covariates on hazard are
constant over time. Deviation from this assumption can cause
misleading results. The proportional hazards assumption can
be tested by plotting Shoenfeld residuals (Shoenfeld 1982;
Grampsch and Therneau 1994) against the log of time (any
significant slope indicates that proportionality is time-
dependent). Another residual, called the score residual, is
useful for identifying influential and poorly fit observations
(see Hosmer and Lemeshow (1999) for a thorough discus-
sion of fit evaluation for proportional hazards models).

Competing risks
The binary approach to censoring applied in the preceding

sections is complicated by the availability of multiple pas-
sage routes, a common feature of downstream passage stud-
ies. Before passage, fish are available to pass through all
routes, i.e., they are part of the risk set. Once a route is se-
lected, however, they no longer contribute to the passage rate
of any route. In other words, an individual passing via a
given route is effectively censored with respect to the other
routes. This constitutes a competing risks situation for which
event-time analysis methods are particularly well suited
(Allison 1995).

When confronted with a competing risks situation, a multi-
step approach is appropriate. First, all covariates except pas-
sage route are included in the model. This allows inclusion
of individuals that were not observed passing through either
route (i.e., censored observations) and provides the best esti-
mate of overall passage rate. Next, separate models are
developed for individuals passing through each route of in-
terest by modifying the censoring variable. For each model,
non-passers, as well as those that pass through alternate
routes, are included, censored at time of passage; only those

that pass through the route of interest are noncensored. The
advantage of this step is that it evaluates separately variables
that affect the rates at which fish pass through each route.
Although different results for competing passage routes sug-
gest some underlying difference in covariate effects on pas-
sage rate that may be of substantial biological interest, the
competing risks approach does not test for these differences
explicitly; it is simply a means of quantifying covariate ef-
fects on passage rates through a particular route. This means
that researchers can use the entire risk set when analyzing
passage rates through any route, or combination of routes,
and the approach can be applied to any of the methods de-
tailed above, a potent tool for evaluating the effects of facil-
ity operations on passage rate through a particular route. The
only assumption required is that fish that have not yet
passed the dam are equally available to pass via all routes
and should be included when evaluating the effects of
covariates on the groups.

Logistic regression
Although the competing risks approach allows separate

analysis of rates of passage through various routes, it does
not directly quantify which variables most influence the like-
lihood of selecting one route over another. Logistic regres-
sion is a standard method for quantifying covariate effects
on the likelihood of selecting one of two or more categorical
variables (Hosmer and Lemeshow 1989). By including time
as a covariate, the effect of delay on passage route selection
can be tested directly. Censored individuals, because they
are not observed to actually pass, are generally not included
in such analyses (Allison 1995).

Data set
We selected a sample data set (RMC Environmental Ser-

vices, Inc., currently Normandeau Associates, 917 Route 12,
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Fig. 1. Plan view of Wilder Station (42°40′N, 72°18′W) showing location of forebay, powerhouse, and sluiceway. Inset shows location
of facility on the Connecticut River in northeastern U.S.A. (VT, Vermont; NH, New Hampshire; MA, Massachusetts; CT, Connecticut;
RI, Rhode Island).
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Suite 1, Westmoreland, NH 03467, U.S.A., unpublished data)
to demonstrate the utility of each of the event-time analysis
methods for describing the effects of operational modifica-
tions and other variables on delay. Here we define delay as
the time elapsed between forebay entry and passage, i.e.,
forebay residence time. The study was conducted in 1994 at
Wilder Station, a hydroelectric facility on the Connecticut
River mainstem at river-kilometre 348, and was designed to
test the effect of different depth settings of a bypass sluice
gate on passage route selection. The ice–log sluice used for
downstream smolt passage is located adjacent to the power-
house (Fig. 1). A 3.0 m × 4.6 m skimmer gate regulates sur-
face flows of 1.38 m3·s–1 at 0.305-m depth to 18.7 m3·s–1 at
1.83-m depth. When operated for smolt passage, the gate is
normally set to 1.07-m depth, passing 8.77 m3·s–1 down an
18.3-m-long sluice into the station tailrace. The powerhouse
contains two 19-MW Kaplan turbines and one 3.2-MW gen-
erator, protected by trashracks with 15 cm horizontal and
48 cm vertical spacing. No spill occurred during this study,
so all flow passed through the turbines or over the bypass
sluice. These were the only two passage routes available to
the smolts during this period.

Atlantic salmon smolts were obtained from two sources: a
bypass sampler on the Connecticut River mainstem (“wild”
fish; n = 65, fork length (FL) = 137–235 mm, FL = 179 mm),

and the White River National Fish Hatchery in Bethel, Ver-
mont (“hatchery” fish; n = 93, FL = 152–218 mm, FL =
190 mm). Source of fish is referred to as “origin” and coded
0 and 1, respectively, for wild and hatchery smolts in analy-
ses. Smolts were anaesthetized using MS-222 and radio-
tagged using esophageal implants. Following a 24-h recov-
ery period, fish were released 1 km upstream of Wilder Sta-
tion. This was considered sufficient distance to prevent any
predisposition on the part of the smolts to pass through one
route over the other. Smolts were released in six groups of
21–33 individuals on 13, 17, 19, 21, and 25 May and
2 June 1994 (Fig. 2). Wild fish made up 48% (33–58%) of
the first five releases; the last release consisted of hatchery
fish only. Telemetry receivers were placed in such a way
that smolts were detected when they entered the forebay of
the project (which extended about 200 m upstream of the
dam) and were monitored continuously during their forebay
residence. A four-element YAGI antenna situated halfway
down the sluice identified sluice passers, and antennas sub-
merged at the entrance of each intake identified turbine pass-
ers. Time to passage (delay or residence time) was
calculated from the time that fish first entered the forebay to
ensure that only data from actively migrating fish were used.

Turbine flow was logged each hour and ranged from 19.8
to 308 m3·s–1, X = 253 m3·s–1. Because fish that did not im-
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Fig. 2. Kaplan–Meier curves describing forebay residence times of radio-tagged Atlantic salmon (Salmo salar) smolts passing Wilder
Station during each of six releases. Open triangles indicate censored individuals. Gate depth is indicated in each panel, as well as
shifts from 0.76 m to 1.52 m during the last three releases. Note the rapid passage on the 19 May release and increased passage rate
following increased gate depth during the last three releases.
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mediately pass the station were often subjected to more than
one level of turbine flow (Fig. 3), this was not included in
the parametric models but was included as a time-dependent
covariate in the proportional hazards models.

A similar complication arose with respect to sluice gate
depth. This was set to 1.07 m for the first two releases,
1.52 m for the third release, and 0.76 m for the last three re-
leases. For each of the last three releases, the sluice gate
depth was increased to 1.52 m after 44–46 h (Fig. 2). To pre-
vent the artificial association of greater gate depth with long
passage delays, we censored data from these releases at the
corresponding residence times for the parametric regression
analysis but included the data with gate depth as a time-
dependent covariate in the proportional hazards analysis.

Because fish could only pass through the turbines or over
the sluice, passage route constituted a competing risks vari-
able in this study. Separate models were generated for each
route as well as for the combined data using fully parametric
and Cox’s proportional hazards techniques. To test for differ-
ences between routes in covariate effects on passage rate, we
ran the above tests, including route and its interactions with
the other covariates.

We used SAS software (SAS 1999) to estimate covariate
effects on passage time. We selected from among exponen-

tial, Weibull, lognormal, and generalized gamma distribu-
tions, testing for the best fit using likelihood ratio statistics
and AIC. Where nested models were not significantly differ-
ent from each other, we selected the most parsimonious
model, i.e., the one with the fewest parameters. Adequacy of
the parametric models was evaluated both numerically and
graphically, using each of the methods detailed above. We
evaluated adequacy of proportional hazards models using
Schoenfeld and score residuals.

In addition to the above tests, we used logistic regression
to test for covariate effects on likelihood of passing through
the bypass sluice, including log of delay time as a covariate.
All analyses were conducted using SAS software (SAS 1999).

Results

Of the 158 Atlantic salmon smolts used in this study, 14
(eight hatchery and six wild) had undetermined passage
routes or failed to pass; these were included in the analyses,
censored at their last extant observation. In all, 144 smolts
passed the station by known routes: 106 over the bypass
sluice and 38 through the turbines. Most fish entered the
forebay shortly after release; mean ± standard deviation (SD)
of postrelease delay was 1.27 ± 1.70 h, with all but three in-
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Fig. 3. Turbine flow at Wilder Station during each of six releases. Data are presented as hours from each release. Points indicate
passage time for sluice passers (circles) and turbine passers (squares); censored times are indicated by triangles. Arrows indicate time
to increased gate depth in each of the last three releases.
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dividuals entering within 4 h. Kaplan–Meier survivorship
curves of residence time (S′(t); Kaplan and Meier 1958) are
presented for each release group (Fig. 2).

Results from both parametric and proportional hazards
models (Table 1) should be interpreted with some caution, as
there was significant collinearity among covariates. This ef-
fect was greatest between release date and both gate depth
and turbine flow. Correlation coefficients were in all cases
less than 0.45, however, and the effect of collinearity on the
models should be small.

Among the parametric models, the generalized gamma dis-
tribution provided a better fit to the combined data than did
the Weibull or exponential distributions (χ2; 1 and 2 df, re-
spectively; P < 0.001). However, the lognormal and gamma
distributions provided nearly identical fits (χ2; 1 df; P = 0.81).
Based on these results, combined with the AIC values, the
Hollander and Proschan test (P = 0.20), and analysis of
Cox–Snell residuals (Fig. 4), we concluded that the
lognormal distribution was the most appropriate and parsi-
monious of the distributions tested and that it adequately de-
scribed the data. Under this parameterization, the scale variable
is analogous to the error term under the standard normal dis-
tribution; location is estimated by x�. The estimated scale
values of 1.6–2.2 indicate that passage rate (i.e., hazard) fol-
lows an inverted U shape: initially low, it rapidly increases
to a maximum value and then declines gradually over time
(Meeker and Escobar 1998).

Coefficients of the parametric models indicate covariate
effects on ln(T). These describe reduced delay with increased
gate depth for combined passage data and for both passage
routes, as indicated by a significant negative coefficient. The
interpretation of this for the combined data, adjusting to
centimetres, is T = 100(e–0.055 – 1), or mean delay decreases
by 5.4% for every centimetre of increased gate depth. The
same transformation for sluice and turbine passers shows a
6.1% and 2.6% decrease in delay time per centimetre in-
crease of gate depth, respectively. For the current data set,
this implies that by increasing gate depth from the shallow-
est to deepest settings and setting all other covariates to their
mean values, median delay declines from 19.9 to 0.3 h when
both passage routes are available, and delay of the 90th per-
centile declines from 152.8 to 2.4 h (Table 2). The paramet-
ric approach also suggests that fish released later in the study
passed more slowly than earlier releases (positive β), regard-
less of passage route.

Results of proportional hazards regression indicate that
gate depth affected passage rate, particularly among sluice
passers (Table 1). Faster passage rate at greater depths is in-
dicated by a significant positive coefficient (greater hazard;
note the contrast with the parametric approach). Adjusting to
centimetres and transforming the data to risk ratios, we find
here a 3.6% increase in passage rate associated with each
centimetre of gate depth for combined data and a 4.0% in-
crease for sluice passers.
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Parametric Proportional hazards

Data set Variables N �β P value N �β P value

Combined data Number passed 121 144
Number censored 37 14
Intercept –787.190 0.018 — —
Origin –0.007 0.981 0.042 0.810
Release date 0.063 0.017 –0.019 0.323
Turbine flow (m3·s–1) — — 0.001 0.611
Gate depth (m) –5.459 <0.001 3.528 <0.001
Scale 1.589 — —

Sluice passers Number passed 89 106
Number censored 69 52
Intercept –499.125 0.183 — —
Origin 0.163 0.609 –0.055 0.787
Release date 0.040 0.175 –0.025 0.289
Turbine flow (m3·s–1) — — –0.003 0.210
Gate depth (m) –6.316 <0.001 3.972 <0.001
Scale 1.695 — —

Turbine passers Number passed 32 38
Number censored 126 120
Intercept –1460.460 0.034 — —
Origin –0.462 0.406 0.316 0.378
Release date 0.117 0.033 –0.029 0.433
Turbine flow (m3·s–1) — — 0.009 0.024
Gate depth (m) –2.562 0.039 1.820 0.068
Scale 2.185 — —

Note: The competing risks approach was applied to each passage route, where censored individuals include those passing through the al-
ternate route. Parametric models are based on the lognormal distribution: coefficients ( �β) indicate effect of each variable on the log of delay
(ln (T)); scale refers to the error term. Coefficients for the proportional hazards models indicate their effect on the log of the hazard
(ln(h(t))). Origin is coded 1 (hatchery) and 0 (wild).

Table 1. Results from parametric and Cox’s proportional hazards regression.
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Turbine flow also affected passage rate, but only among
fish that passed through the turbines. Here, the positive coef-
ficient indicates a hazard ratio of 1.009. Over the range of
turbine flows encountered in this study, this means that the
rate of fish passage through the turbines was 2.6 times greater
under the highest flow than under the lowest flow.

Residual analysis confirmed that the assumption of pro-
portionality was met in these models. However, analysis of
the score residuals suggested that the last fish to pass from
the 19 May release was influencing the results, particularly
with respect to the coefficients for gate depth. When this in-
dividual was removed from the analysis, the coefficients for
total data and sluice passers increased to 4.7% and 5.3% per
centimetre increase in gate depth, respectively. The only other
notable effect of removing this data point was to increase the
P value for the coefficient describing the gate depth effect
on turbine passers to 0.121, casting further doubt on its im-
portance.

Significance tests for different effects of gate depth and
turbine flow on rates of sluice and turbine passage suggested
that covariate effects did differ between the two routes, al-
though neither the parametric nor the proportional hazards
approach found a significant difference in passage rate by
route (main effect), the interaction of route × gate depth was
strongly significant for both models (P < 0.001). In contrast,
the interaction of route × turbine flow was only marginally
significant (P = 0.063; proportional hazards model only). It
is important to emphasize here that these tests, because they
include passage route, exclude the censored observations and
should therefore be considered biased approximations.

The logistic model (Table 3) demonstrates that the proba-
bility of turbine passage increases with delay (note that data
from censored individuals are omitted). Probability of turbine
passage was likewise increased by greater turbine flow but
was reduced by greater sluice gate depth.

Discussion

Although the results of this study inevitably have manage-
ment implications, readers should bear in mind that our ob-
jective is to introduce a new technique and demonstrate its
use. RMC (1994) correctly concluded that the gate depth
setting of 1.52 m afforded more expedient downstream pas-
sage to emigrating smolts and the sluice is currently oper-
ated at this depth for fish passage. Therefore, the intent of
this paper is not to call into question existing management
decisions, but to present techniques that will lead to further
and more complete investigations of bypass configurations
and other passage evaluations. Moreover, it is important to
recognize that although we define delay here as forebay resi-
dence time, the term implies a change relative to some mini-
mum transit time. This value is unknown, but its identification
and characterization should be an objective of future studies.
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95% bounds

Gate
depth

Percent
passed

Predicted
delay (h) Lower Upper

0.76 10 2.60 1.83 3.71
50 19.94 14.56 27.32
90 152.78 101.16 230.77

1.07 10 0.49 0.37 0.66
50 3.78 3.02 4.73
90 28.93 20.67 40.50

1.52 10 0.04 0.02 0.07
50 0.31 0.19 0.50
90 2.38 1.41 4.03

Table 2. Predicted delay times from the parametric regression
model (Table 1) for median and first and last deciles of Atlantic
salmon smolts passing a hydroelectric facility by either route
(“combined data”) under three different sluice gate settings.

Source �β P value

Intercept –4.0930 0.9936
Origin –0.3732 0.3931
Release date 0.0004 0.9904
Turbine flow (m3·s–1) –0.0077 0.0158
Gate depth (m) 0.4549 0.0339
ln(hours) –0.2651 0.0234
N 144

Note: Positive coefficients ( �β) mean increased proba-
bility of sluice passage; origin was denoted as 1 (hatch-
ery) and 0 (wild); gate depth and turbine flow indicate
settings at time of passage. Fish that failed to pass were
excluded from this analysis; sample size (N) refers to
passers only.

Table 3. Logistic regression results describing the
effect of covariates on passage route selection.

Fig. 4. Graphical assessment for goodness-of-fit of the lognormal
parametric regression model using the total data set (sluice and
turbine passers combined). Cox–Snell residuals (ei) are plotted
against the negative log survivorship function (–ln(S′(t)), calcu-
lated using the Kaplan–Meier method (circles). A line with slope
of unity, an indicator that the model provides a reasonable fit,
has been included for reference.
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Our results do highlight some important differences among
the event-time analysis techniques, as well as their relative
strengths. Survivorship curves are simple to construct, and
their significance is readily interpreted. Here, they show that
although the first half of the fish pass fairly quickly, passage
rate declines with time and the slowest fish take several days
to pass the project. Reporting only median passage time
masks this important feature (Venditti et al. 2000), a fact that
should be of some concern to restoration efforts. The
survivorship curves also provide graphical representation of
the effects of sluice gate depth setting. Delay times were
least for the 19 May release (gate depth of 1.52 m) and
greatest for the last three releases (gate depth of 0.76 m).
Those fish that delayed passage until after the gate was set
to a greater depth show a correspondingly greater rate of
passage at that time.

More censoring was observed for later release dates and
shallower gate settings. However, there is no reason to believe
that censored and complete observations differed with respect
to their response to covariate values. With the exception of the
competing risks models, the exact cause of censoring was not
determined and may have been due to mortality, tag failure or
expulsion, or undetected passage.

Although nonparametric methods for analyzing data with
censored observations exist, adequate sample size and the
presence of multiple, nonorthogonal covariates indicated the
use of a regression approach in this analysis. Both the para-
metric and Cox’s proportional hazard models simultaneously
account for all covariate effects (Type III hypotheses; SAS
1999), but they differ in important ways. First, because the
parametric models describe covariate effects on forebay resi-
dence time, we are able to use them to estimate time to pas-
sage of specific proportions of the population at defined
covariate levels, a useful tool for managers and those inter-
ested in understanding population-level implications of de-
lay. The proportional hazards models, by contrast, describe
covariate effects on passage rate (hence the reversed sign of
the regression coefficients: passage rate is inversely related
to residence time) and cannot be used to directly estimate
delay time (but see Hosmer and Lemeshow (1999) for meth-
ods by which indirect estimates can be extrapolated).

The parametric models can also be used to draw important
inferences on the shape of the hazard and consequently the
distribution of quantiles. Here, the numerical and graphical
goodness-of-fit analyses both suggest that the lognormal
models provide a reasonable fit to the data. This implies that
the log delay times are approximately normally distributed
(Allison 1995). The inverted U-shaped hazard function de-
scribed by these models may have some biological signifi-
cance, as it implies both initial delay (as might be expected
from time required to locate the passage route) and reduced
passage rates for fish that do not subsequently pass quickly.
Thus, the risks of delay include increased likelihood of fur-
ther delay, a pattern that one would predict if delay resulted
in loss of migratory motivation (Meeker and Escobar 1998).

Although the Cox’s proportional hazards models do not
yield parametric descriptions of the hazard, their independ-
ence from specific distributions make them robust against
fluctuating passage rate, e.g., resulting from diel migratory
patterns, requiring only that covariate effects on hazard ra-
tios be consistent across these patterns. With either approach,

we advise against extrapolating far beyond observed values
of covariates or delay times.

A further distinction is that proportional hazards models
allow ready computation of effects of covariates that change
over time, whereas the parametric models assume that each
fish is exposed to fixed covariate conditions. This feature has
important implications for the interpretation of the effects of
release date and gate depth, as well as turbine flow. Because
the shallowest gate settings were applied at the end of the
experiment, the experimental design was unbalanced, and
variability caused by this factor is wrongly apportioned be-
tween gate depth and release date under the fully parametric
model. By including gate depth as a time-dependent co-
variate, potentially confounding effects between the two
variables are reduced. Under this less biased interpretation
of the data, delay is appropriately attributed to gate depth
and not to date.

Similarly, fluctuations in turbine flow precluded its inclu-
sion in parametric models — any quantity used (e.g., initial,
mean, or final turbine flow) would yield misleading results,
because it would not reflect the range of flows to which indi-
vidual fish were exposed with their associated passage rates.
As with the sluice gate settings, minimum daily discharge
was less for later releases, and the significant date factor in
the parametric models may have arisen in part from the
covariance between date and discharge. When turbine flow
was included in the proportional hazards models as a time-
dependent covariate, it was found to significantly increase
the rate of turbine passage, but not sluice passage, and was
nonsignificant for the total data.

Both turbine passage models, with their weak effects of
turbine flow and gate depth, also illustrate one of the limita-
tions of event-time analysis: because only 38 fish passed
through the turbines, over 75% of the observations are cen-
sored. This increases the standard error of the estimates, and
the power of these models decreases with increased censor-
ing. Thus, the weak significance values for gate depth should
be viewed with caution: it may be that increased gate depth
does increase passage rate for fish that pass through the tur-
bines (as indicated by the parametric model), but the propor-
tional hazards model lacked sufficient power to detect this
effect.

The competing risks condition of this study illustrates the
utility of event-time analysis techniques in analyzing pas-
sage data. The experimental design reasonably allows one to
ask the question: does gate depth affect the passage rate
through the bypass sluice? Including turbine passers among
the censored data provides the clearest, least-biased answer
to this question. Conversely, by censoring sluice passers, we
were able to detect the effect of turbine flow on rate of pas-
sage through the turbines, which was not apparent from the
analysis of the total data. This approach, however, does not
directly test for the significance of differences in passage
time between the two routes. Indeed, in the presence of cen-
sored data, there is no available way to conduct such a test
objectively. Here, we constructed a model on the non-
censored data that included passage route and the interac-
tions of route × gate and route × turbine flow. The results
showed strong significance for the former test but marginal
significance for the latter. Because data from censored fish
are omitted, these results are of necessity biased; at best, the
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resulting models tend to underestimate time to passage
(eq. 6). They do, however, describe the data from those fish
with observed passage times and routes and further support
the results of the competing risks analysis.

Whether the increased passage rate with increased gate
depth resulted directly from the associated increase in flow
or whether it reflects behavioral avoidance of the surface is
unclear from this study. Surprisingly, greater gate depth was
also associated with increased turbine passage rate. This may
be because increased flow over the sluice attracted fish to
the powerhouse area or otherwise altered forebay hydraulics
such that fish passed more quickly through both routes. The
effect of turbine flow supports the view that hydraulics af-
fect passage rate, but the results for sluice passers remain
ambiguous. Future studies should attempt to simultaneously
control for volume and depth of bypass flows, as well as the
ratio of bypass flow to turbine flow, to improve orthogonality
of these factors.

Each of the techniques described above has specific ad-
vantages and can provide unique information on passage
rate. The most appropriate approach will depend on time
resolution (Cox’s proportional hazards regression can incor-
porate ordinal time data, whereas parametric regression re-
quires a continuous time variable), shape of the hazard
function, and research objectives. None of the above tech-
niques, however, quantifies covariate effects on route selec-
tion as such. Logistic regression does just this and thereby
complements event-time analysis. Bearing in mind that data
from 14 individuals are missing, logistic regression reveals a
significant time effect, with greater delays associated with
increased risk of turbine passage. This result alone can be a
powerful argument for trying to maximize passage rates.
Also significant in the logistic model are effects of turbine
flow and gate depth, with greater flow and shallower gate
settings associated with increased risk of turbine passage.

Combining the logistic and event-time approach, we con-
clude that shallower gate depth not only increased delay, but
also simultaneously (in part, because of the delay) increased
the likelihood of turbine passage, particularly in the presence
of high turbine flows. These results illustrate the complemen-
tary nature of event-time and logistic regression approaches:
shallower sluice gate settings reduced passage rates, espe-
cially through the sluice. This, in turn, increased the time
during which fish were exposed to the possibility of passing
through both routes, thereby increasing the likelihood of tur-
bine passage. Thus, by modifying operations to maximize
the rate at which fish pass over the sluice, both delay and
likelihood of turbine passage could be minimized simulta-
neously.

The bulk of current fish passage research work focuses on
proportions of fish passing through various routes, primarily
because this is thought to have the greatest relevance to sur-
vival and recruitment (Burnham et al. 1987; Skalski 1998;
Skalski et al. 1998). Although the importance of delays to
migration is not well understood, it is bound to vary by spe-
cies, river system, and life history (McCormick et al. 1996;
Zydlewski and McCormick 1997b; Zabel et al. 1998). Our
understanding of the effect of delay is limited at the outset
by our ability to quantify it. Event-time analysis provides a
powerful set of tools for developing just such descriptions,
as well as for evaluating effects of structural and operational

modifications on passage rates. Because they afford continu-
ous monitoring of individuals, radiotelemetry and acoustic te-
lemetry are particularly well suited to these analyses. Other
forms of telemetry and monitoring (e.g., from passive inte-
grated transponder (PIT) tags) may also be useful; however,
it is important that time to passage or censoring is known.
Because PIT tags tend to have relatively short read ranges
(Prentice et al. 1990; Castro-Santos et al. 1996), it may not
always be possible to identify censoring times using this
technology, although the competing risks approach could
still be applied to some data.

Although this paper focuses on the application of event-
time analysis to a radiotelemetry study of downstream fish
passage, the techniques have much broader potential. Analo-
gous applications include quantifying attraction of upstream
migrants to fishway entrances, monitoring progress up fish-
ways (where height can be substituted for time as the de-
pendent variable and successfully exiting the top of the
fishway constitutes censoring), and quantifying timing of
movements of other migratory species: in short, any applica-
tion may be appropriate where censoring and competing risks
confound the use of standard techniques.
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