#### Stress in fishes

#### Definitions

- Over the years a definition of stress has proved difficult to form
- "A shift in normal, homeostatic, physiological processes resulting from the action of any biotic or abiotic force"
- "The response of a cell, or organism, to any demand placed on it such that it causes an extension of a physiological state beyond the normal resting state"

#### Stress in fishes

- Why should we care about stress?
   Reproduction
  - □ Ionic, osmotic, acid base regulation
  - Behavioral responses
  - Immunity
  - Growth
  - □ Etc.

What do we mean by 'Stress'

Stressors
Chemical
Pollution
Water quality extremes

Physical
Handling
Capture
Confinement
Transport

Perceived
Startle response
Predator detection





#### Stress in fishes

- Primary Response
  - The initial response is reflective of the perception of an altered state and initiates a neuroendocrine response
  - A rapid release of 'stress' hormones
  - Catecholamines are released from the chromaffin tissue (Kidney)
  - Adrenocorticotropic Hormone (ACTH) signals interrenal cells (Kidney) to secrete cortisol
    - ACTH can also stimulate adrenaline release
    - $\hfill\square$  Cortisol can impact catecholamine storage and release  $\hfill\square$  There are likely paracrine interactions of these systems
- What do we mean by 'Stress'



#### Stress in Fishes

- Catecholamines frequently clear from circulation quickly (<30 min)</li>
   Adrenaline, Noradrenaline
- Cortisol remains elevated for a more extended period.





















#### Stress in Fishes

- Secondary Response
  - The suite of physiological and biochemical responses due predominantly to activities of cortisol of catecholamines
  - □ Why are glucose concentrations used as a secondary response associated with stress?

## Why are glucose concentrations used as a secondary response associated with stress?

- Both catecholamines and cortisol have activity on liver tissue
  - □ Glycogenolysis (catecholamines)
  - □ Gluconeogenesis (cortisol)
  - □ Inhibition of glycogen re-synthesis (cortisol)

# Why are glucose concentrations used as a secondary response associated with stress?

- Secondary Response
  - □ Stress is an energy demanding process.
  - □ Animals need to mobilize energy.

- □ Glucose concentrations typically remain elevated for hours after the stressor
- Elevated glucose appears to be sustained in part due to elevated cortisol concentrations











#### A Generalized Stress Response

- Disease challenge, confinement, handling, transport, tank color, anesthetics etc can all be viewed as stressors.
- All activate the HPI axis and lead to an increase in primary responses (plasma cortisol) in response to exposure

#### Generalized Stress Response

While an elevation in cortisol associated with a challenge is an indication of the stress response caution in interpreting quantitatively is advised.
 Does more cortisol = more stress?



Does Higher Cortisol in a Stressed State Mean Greater Stress?

**Cumulative Acute Stressors** 





# Can you mitigate impacts of hauling stressors

Salt

- Density
- Ram ventilation
- Cribs
- Current research..activation of the cellular stress response
- Others
  - Voodoo charm bracelets
  - Standing on one foot with one eye closed when interpreting the data









#### Current Thinking on Cortisol and Stress

- Stress can be detected by an elevation in plasma cortisol.
- This response can be safely viewed qualitatively (stressed/non-stressed)
- Extreme caution should be taken in making any inference of quantitative differences in magnitude of the response
  - □ Is 140 ng/mL less stressed than 200 ng/mL?
  - No clear answer to this question

#### Mode of Action

- Hormones activity is dependent upon receptors and signaling pathways and these are not constant in number
- Catecholamine,
  - □ nongenomic receptors (fast acting)
- Cortisol,
  - classical genomic receptors (not so fast acting)
     non-genomic receptors (fast acting)

Fasting acting receptors are extremely important in the cardiovascular, respiratory, and metabolic changes associated with acute stress









| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | allid sturgeons after a 3                                                                                        | ol and lactate in yearling<br>60-s aerial-emersion han-                          |                                                                           |                                                                          |                                                                             |                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|
| $ \begin{array}{c} \label{eq:relation} \mbox{Pinnu} \mbox{ certified by art $^{1/2}$} & Table 1 \\ 1 & 3.17 \pm 0.29 \mbox{ b} 2.29 \pm 0.33 \mbox{ a} \\ 1 & 3.17 \pm 0.29 \mbox{ b} 2.29 \pm 0.23 \mbox{ b} 3.29 \pm 0.24 \mbox{ b} 3.29 \pm 0.23 \mbox{ c} 3.23 \pm 0.24 \mbox{ c} 3.24 \pm 0.34 \mbox{ c} 0.77 \pm 0.17 \mbox{ c} 0.31 \mbox{ c} 3.23 \pm 0.24 \mbox{ c} 0.37 \pm 0.24 \mbox{ c} 3.23 \pm 0.24 \mbox{ c} 0.37 \pm 0.24 \mbox{ c} 3.23 \pm 0.24 \mbox{ c} 0.37 \pm 0.24 \mbox{ c} 3.23 \pm 0.24 \mbox{ c} 0.37 \pm 0.24 \mbox{ c} 0.24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time (h)                          | Hybrid sturgeon*                                                                                                 | Pallid sturgeon"                                                                 |                                                                           |                                                                          |                                                                             |                                                          |
| $ \begin{array}{c} {\rm Control} 2 & 0.5 \times 0.16 \times 0.15 \times 0.08 \times 0.16 \times $ | Plasna cortis<br>0<br>1<br>3<br>6 | al (ng ml <sup>-1</sup> )<br>2.19 ± 0.37 a.b<br>3.17 ± 0.29 b<br>2.70 ± 0.21 b<br>2.26 ± 0.25 a.b<br>1.12 = 0.15 | $2.29 \pm 0.33$ a<br>$2.97 \pm 0.26$ a<br>$2.85 \pm 0.42$ a<br>$2.99 \pm 0.23$ a | Table 3<br>Mean ± S.E.<br>sturgeon and<br>after: (a) a 3<br>severe confir | (n = 9 -12) pk<br>l plasma chlori<br>l-s aerial-emersi<br>ement (with ha | isma glucose in<br>de in hybrid an<br>on handling stre<br>ndling) stressor" | n yearling hybr<br>d pallid sturgeo<br>ssor, and (b) a 6 |
| $ \begin{array}{cccc} {\rm Control 24} & 1.33 \ 1 & 1.252 \ 0.19 \ 3 & {\rm phrose} \\ {\rm formula factory (2014)} & {\rm formula factory (2014)} & {\rm phrose} \\ {\rm formula factory (2014)} & {\rm formula factory (2014)} & {\rm phrose} \\ {\rm formula factory (2014)} & {\rm for$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control-6<br>24                   | $1.49 \pm 0.16$ a<br>$2.07 \pm 0.24$ a.b                                                                         | $3.15 \pm 0.28$ a<br>$3.42 \pm 0.56$ a<br>$3.22 \pm 0.10$                        | Time (h)                                                                  | Time (h) Plasma Plasma chloride (meq 1                                   |                                                                             |                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control-24<br>Plasma lactat       | 1.58 ± 0.15 a<br>∀ (nunol 1 <sup>-1</sup> )                                                                      | 2.22 ± 0.19 a                                                                    |                                                                           | glucose<br>(mg dl <sup>-1</sup> )                                        | H                                                                           | P                                                        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                 | 1.21 ± 0.14 a                                                                                                    | $0.42 \pm 0.10$ a                                                                |                                                                           |                                                                          |                                                                             |                                                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                 | 1.41 ± 0.09 a                                                                                                    | $1.27 \pm 0.36$ a                                                                | 30 s handlin                                                              | t                                                                        |                                                                             | 017.077                                                  |
| $ \begin{array}{cccc} 6 & 1.25 \pm 0.14 & 0.68 \pm 0.10 & 1 & 1 & 171 \pm 2.42 & 100 \pm .01 & 101 \pm .01 \\ -0.017 \pm 0.05 \pm 0.017 & 0.017 \pm 0.017 \pm 0.018 & 101 \pm .018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 & 1018 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                 | $1.32 \pm 0.16$ a                                                                                                | $1.10 \pm 0.43$ a                                                                | 0                                                                         | $59.1 \pm 3.44$                                                          | 108 ± 2.77                                                                  | 91.7 ± 0.65                                              |
| Control-6         1.45 ± 0.17 n         0.91 ± 0.16 a         3         80.5 ± 0.00 10 ± 1.23 m         70.2 ± 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                 | $1.25 \pm 0.14$ a                                                                                                | $0.68 \pm 0.10$ a                                                                | 1                                                                         | $51.7 \pm 2.82$                                                          | $110 \pm 2.01$<br>$107 \pm 1.20$                                            | 91.1 ± 3.30<br>00.8 ± 2.28                               |
| $ \begin{array}{c} 24 \\ Control 24 & 1.57 \pm 0.16 \\ a \\ \hline \\ Control 24 & 1.57 \pm 0.16 \\ a \\ \hline \\ Control 24 \\ \hline \\ Control $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Control-6                         | $1.45 \pm 0.17$ a                                                                                                | 0.91 ± 0.16 a                                                                    | 2                                                                         | $50.8 \pm 4.00$<br>$50.6 \pm 1.24$                                       | $107 \pm 1.29$<br>$115 \pm 2.04$                                            | 96.0 ± 2.20                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                | 0.65 ± 0.07 b                                                                                                    | 1.24 ± 0.45 a                                                                    | Control 6                                                                 | 618+454                                                                  | $105 \pm 1.89$                                                              | $97.6 \pm 1.09$                                          |
| $\begin{array}{c} \mbox{Control $24$} & \mbox{50.2} \times 331 & \mbox{111} \pm 1.64 & \mbox{57.2} \pm 1.33 & \mbox{111} \pm 1.64 & \mbox{57.2} \pm 1.26 & \mbox{16.2} \pm 1.26 & \mbox{57.2} \pm 1.26 & \mbo$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control-24                        | 1.37 ± 0.16 a                                                                                                    | 0,17±0.19 a                                                                      | 24                                                                        | 59.1 + 3.18                                                              | 111 + 3.20                                                                  | 101 + 1.81                                               |
| $ \begin{array}{c} 6 \ 8 \ \text{strengt} \ \text{voltament} \ \text{voltament} \ \text{voltament} \\ 0 \ 52 \ 32 \ 15 \ 110 \ \pm 248 \ 97.2 \pm 1 \\ 1 \ 64.4 \pm 3.49 \ 110 \ \pm 2.39 \ 97.3 \pm 1 \\ 2 \ 6.52 \ \pm 107 \ 111 \ \pm 101 \ \pm 2.39 \ 97.3 \pm 1 \\ 3 \ 13.4 \ \pm 3.52 \ 100 \ \pm 1.72 \ 97.4 \pm 1 \\ 4 \ 63.5 \ \pm 3.52 \ 100 \ \pm 1.72 \ 97.4 \pm 1 \\ 4 \ 63.5 \ \pm 3.52 \ 100 \ \pm 1.72 \ 97.4 \pm 1 \\ 4 \ 53.5 \ \pm 3.53 \ 100 \ \pm 3.53 \ \pm 3.53 \ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                                                                                  |                                                                                  | Control-24                                                                | $59.7 \pm 3.31$                                                          | $111 \pm 1.64$                                                              | $97.2 \pm 1.04$                                          |
| $\begin{array}{c} 0 & 5.25\pm 3.26 & 116\pm 2.48 & 97.2\pm 1.1 \\ 1 & 4.04\pm 3.06 & 110\pm 2.07 & 97.2\pm 1.1 \\ 1 & 4.04\pm 3.06 & 110\pm 2.07 & 97.4\pm 1.1 \\ 1 & 4.04\pm 3.08 & 100\pm 1.72 & 97.4\pm 1.1 \\ 1 & 4.05\pm 3.82 & 100\pm 1.72 & 97.4\pm 1.1 \\ 4 & 4.25\pm 4.86 & 110\pm 1.46 & 97.0\pm 0.1 \\ 6 & 5.05\pm 2.25 & 100\pm 1.23 & 990\pm 3.1 \\ 6 & 6.05\pm 2.25 & 100\pm 2.33 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.05 & 110\pm 2.25 & 990\pm 5.2\pm 1.1 \\ 2 & 4.85\pm 3.25 & 50\pm 1.15 & 110\pm 3.25 & 110\pm 3.25 \\ 2 & 4.85\pm 3.25 & 110\pm 3.25 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                                                                                                  |                                                                                  | 6 h severe c                                                              | 6 h severe confinement with handling                                     |                                                                             |                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                                                                                  |                                                                                  | 0                                                                         | $52.9 \pm 3.26$                                                          | $116 \pm 2.48$                                                              | $97.2 \pm 1.04$                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                                                                                  |                                                                                  | 1                                                                         | $64.4 \pm 3.49$                                                          | $110 \pm 2.39$                                                              | $97.3 \pm 2.26$                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                                                                                  |                                                                                  | 2                                                                         | $62.9 \pm 3.67$                                                          | $111 \pm 1.61$                                                              | $102 \pm 1.53$                                           |
| $\begin{array}{cccc} 4 & 62.9\pm 4.86 & 106\pm 1.146 & 97.9\pm 0.\\ 6 & 22.85 & 109\pm 1.151 & 96.9\pm 1.\\ Control-6 & 42.86\pm 2.37 & 119\pm 2.51 & 100\pm 2.\\ 24 & 55.6\pm 3.50 & 106\pm 2.37 & 93.5\pm 1.\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                                                                                  |                                                                                  | 3                                                                         | $63.6 \pm 3.82$                                                          | $106 \pm 1.72$                                                              | $97.4 \pm 1.00$                                          |
| $\begin{array}{ccccc} 6 & 50.9\pm 2.88 & 10.9\pm 1.51 & 98.0\pm 1.\\ \text{Control-6} & 48.6\pm 2.37 & 10.9\pm 2.51 & 100.\pm 2.2\\ 24 & 55.6\pm 3.05 & 10.6\pm 2.87 & 98.5\pm 1. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                                                                                  |                                                                                  | 4                                                                         | $62.9 \pm 4.86$                                                          | $106 \pm 1.46$                                                              | 97.0 ± 0.96                                              |
| Control-6 $48.6 \pm 2.37$ $109 \pm 2.31$ $100 \pm 2.24 55.6 \pm 3.05 106 \pm 2.87 98.5 \pm 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                                                                                  |                                                                                  | 6                                                                         | $50.9 \pm 2.85$                                                          | $109 \pm 1.51$                                                              | 96.0 ± 1.72                                              |
| 24 55.6 ± 3.05 106 ± 2.87 98.5 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                                                                                  |                                                                                  | Control-6                                                                 | 48.6 ± 2.37                                                              | $109 \pm 2.51$<br>$104 \pm 2.82$                                            | 100 ± 2.75<br>08.6 ± 1.64                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                                                                                                  |                                                                                  | 24                                                                        | 55.6 ± 3.05                                                              | 100 ± 2.87                                                                  | 96.3 ± 1.09                                              |



### Important but less frequently used evaluations of stress in fish

Heat Shock Proteins

- Indicator of cellular stress
  - Advantages: A very sensitive indicator of cellular responses to acute and chronic stressors
  - Disadvantages: Linkages between various stressors and HSP responses & and relationships between neuro-endocrine stress axis and HSP responses are not entirely understood.

#### Neurotransmitters

- Indicates central nervous system responses to stressors
  - Advantages: May explain the underlying changes in peripheral endocrine responses and certain behaviors associated with stress.
  - Disadvantages: Rapid sampling and freezing of samples required. Proper interpretation likely requires analysis of preparations from specific (very small) regions of the brain.

#### Evaluations of Stress in Fish

Plasma Catecholamines

- Rapid primary endocrine response to stress & functionally associated with oxygen delivery and energy mobilization
  - Advantages: Very responsive to acute stressors
  - Disadvantages: Requires cannulation to obtain samples form unstressed fish because of the rapidity of the response

#### Evaluations of Stress in Fish

The common tool box

#### Evaluations of Stress in Fish

- Plasma Cortisol
  - Primary endocrine response to stress & used commonly as an indicator of stress with multiple roles (metabolism, osmoregulation, immunoregulation)
    - Advantages: Predictable indicator of response to acute stress and useful in part because of the delay between stressor and manifesting a stress response
    - Disadvantages: Influenced by genetic, developmental, environmental factors and the response may become desensitized in chronically stressful conditions

#### Evaluations of Stress in Fish

Plasma Glucose

- Metabolic response to stress due in large part by energy mobilization associated with cortisol and catecholamines
  - Advantages: A useful measure that is very easy to determine either by commercial diagnostic kits or portable meters
  - Advantages: Readings can be influenced by a variety of nonstress factors. Species, rearing history, temperature, diet

#### Evaluations of Stress in Fish

Plasma Lactate

- Metabolic response to intense muscular activity
  - Advantages: Very easy assay to perform and increasing availability of diagnostic meters.
  - Disadvantages: Still not clear if it is a 'good' indicator of stress as it has more to do with activity than neuro-endocrine signaling

#### Evaluations of Stress in Fish

- Tissue Glycogen
  - Indicates energy reserves stored in liver and muscle for metabolism
    - Advantages: Depletion indicates mobilization of energy possibly due to stress
    - Disadvantages: Prior animal history is required since values may be influenced by recent feeding.

#### Evaluations of Stress in Fish

Plasma Chloride, Plasma Sodium, Osmolality □ Change indicative of osmoregulatory disturbance

- Advantages: Clinical meters available. Standardized
   challenge approaches to salmonids have been developed in the case of sodium
- Disadvantages: A variety of species are not all that responsive. In the case of osmolality the specific ion imbalance is never known.

#### Evaluations of Stress in Fish

#### Plasma Protein

- Change might be indicative of water imbalance and perhaps an osmoregulatory disturbance.

  - Advantages: Very easy assay approaches
     Disadvantages: Not all that sensitive of a measurement

#### Evaluations of Stress in Fish

#### Hematocrit

- □ A measurement of packed cell volume in the blood
  - Advantages: Very easy to perform
  - Disadvantages: Not a very sensitive approach. Difficulty in interpreting differences (More cells or changes in cell size)

#### Evaluations of Stress in Fish

Leukocrit

- $\hfill\square$  An indication of the fraction of white blood cells in the blood
  - Advantages: A very easy index to measure
  - Disadvantages: Not very sensitive and different stressors lead to varying results +/-



Hemoglobin

- An indication of the oxygen binding capacity of the blood
   Advantages: Very easy to measure
  - Disadvantages: Not a very sensitive indicator to stress

| and authors' unpublished data). Howev<br>ues and many exceptions outside of thes<br>background, rearing history, and enviro<br>views). | ver, considerable variati<br>e ranges exist dependin<br>onmental conditions (se | on among these val-<br>g on species, genetic<br>ee text and cited re- |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                        | Posting                                                                         | Poststress                                                            |

| 2 0 1                             | 0       |               |  |
|-----------------------------------|---------|---------------|--|
| plasma epinephrine (nmoles/L)     | 1-6     | 5-200         |  |
| plasma norepinephrine (nmoles/L)  | 1-14    | 10-100        |  |
| plasma cortisol (ng/mL)           | 2-50    | 30-300        |  |
| plasma glucose (mg/dL)            | 50-150  | 100-250       |  |
| plasma lactate (mg/dL)            | 20-30   | 40-80         |  |
| plasma chloride (meq/L)           | 100-130 | ≈10% ↑ or ↓ * |  |
| plasma sodium (meq/L)             | 140-170 | ≈10% ↑ or ↓ * |  |
| plasma potassium (meq/L)          | 26      | ≈10% ↑ or ↓ * |  |
| plasma osmolality (mOsm/kg)       | 290-320 | ≈10% ↑ or ↓ ª |  |
| hemoglobin (g/dL)                 | 5-9     | < 4           |  |
| hematocrit (% packed cell volume) | 25-40   | 40-50+        |  |



#### All Models are Oversimplifications..but

Homeostasis

- Claude Bernard -- 1860s
  - □ milieu extérieur in which the organism is situated □ milieu intérieur in which the tissue elements live.
  - □ The premise emphasizes maintenance of milieu
  - intérieur within a range of set points
  - Most of our plasma indices reflect narrow resting ranges

#### Fish Physiology

- Is there anything wrong with this notion?

### Predictive Models Surrounding Stress

- 1932 Cannon Fight or Flight
- 1936 Selye
  - General Adaptation Syndrome
- 1977 Mazeaud et al. □ Primary, Secondary, Tertiary

#### Predictive Models Surrounding Stress

- "However, a definition of stress that fits into every disciplines conceptual framework is not on elusive, it may be impossible" Barton 1997
- Useful definitions and models allow for wide ranging discussion. e.g ecology, deep space travel
- The latest iterations of these include the concepts of allostasis and reactive scope model

#### Physiology Models

- Homeostasis implies that an organism remains within a certain range of physiological parameters to maintain stable function.
- Allostasis implies that an organism constantly varies and adjusts physiological parameters to maintain stable function.

Lumpers and splitters exist in every discipline





#### Proposed Consequences -- Allostatic Load Model

Allostasis: "Maintaining stability (or homeostasis) through change" Sterling and Eyer 1988

Allostatic Load: "Wear and tear that the body experiences due to repeated cycles of allostasis" McEwen 1998



#### **Allostatic Load**

- What do 'appropriate' and 'inappropriate' really mean?
- What is the stress response involved with?

| What is stress respo        | onse involved with?            |
|-----------------------------|--------------------------------|
| - A shift in normal, homeos | tatic, physiological processes |
| resulting from the action o | of any biotic or abiotic force |
| Every                       | rning                          |
| Social Interactions         | Predators                      |
| Agonistic Behaviors         | <b>Environmental Cues</b>      |
|                             |                                |

Etc.

An "appropriate" stress response necessary









| Reactive Scope Model               |                                                                                           |                                                                                                              |                                                                                                                                          |                                                                                                     |                                                                                                    |
|------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Table 1<br>Physiological system    | Physiological mediator                                                                    | Predictive homeostasis<br>range                                                                              | Reactive homeostasis<br>range                                                                                                            | Homeostatic overload<br>range                                                                       | Homeostatic failure<br>range                                                                       |
| Immune                             | Prostaglandin<br>T-cell activation<br>Antibody titers<br>Cytokines                        | Seasonal ability to<br>fight infection                                                                       | Mobilization of immune<br>system                                                                                                         | Autoimmune<br>Immunosuppression                                                                     | Immune failure                                                                                     |
| HPA                                | Glucocorricoids<br>ACTH                                                                   | Seasonal Ide-history needs<br>a. Energetic needs<br>b. Behavioral needs<br>c. Preparative needs              | Inhibit immune system<br>Energy mobilization<br>Change behavior<br>Inhibit reproduction<br>Inhibit growth                                | Immunosuppression<br>Diabetes<br>Muscle breakdown<br>Reproductive suppression<br>Decreased survival | Energy dysregulation<br>Water balance failure<br>Catecholamine insufficiency<br>Decreased survival |
| Cardiovascular<br>(catecholamines) | Heart rate<br>Heart rate variability<br>Blood pressure                                    | Life-history energy needs                                                                                    | Fight-or-flight<br>Energy mobilization                                                                                                   | Hypertension<br>Myocardial infarction<br>Muscle breakdown                                           | Hypotension<br>Lethargy<br>Decreased survival                                                      |
| Behavior                           | Foraging/feeding<br>Locomotion<br>Migration<br>Conspecific aggression                     | Life-history changes:<br>a. Energy needs<br>b. Energy availability<br>c. Predator presence<br>d. Mate access | Heeing behavior<br>Freezing behavior<br>Increase/decrease foraging<br>Increase food intake<br>Increase vigilance<br>Conspecific fighting | Tonic immobility<br>Obesity<br>Anxiety<br>Fear<br>Violence                                          |                                                                                                    |
| Central nervous<br>system          | Neurogenesis<br>Dendritic arborization<br>Neurotransmitter<br>concentrations<br>Cytokines | Life-history changes in neural<br>networks<br>Learning and memory                                            | Increase neurotransmission<br>(titers or receptors)<br>Increase learning and<br>memory                                                   | Neuronal atrophy/death<br>Depression<br>Decrease learning and<br>memory                             | Post traumatic stress<br>disorder                                                                  |

















