Introduction Fish 511/

- Who are you?
- My goals? Multiple inputs - Dr. Haukenes, and Dr. Hardy, Dr. Powell
- My approach for learning
- Requirements
- Read material
- Learn to critically evaluate information
- Participate in class discussions
- Present papers for discussions

Exams and Grading

- Oral roundtable exams - 2 scheduled
- One final take home or oral, depending on constraints and preferences

Respiration in Fish

- Oxygen - O2
- Carbon Dioxide CO2
- Ammonia - NH3

O 2 solubility in water is low!

- $1 / 20$ to $1 / 30^{\text {th }}$ of Air
- Oxygen diffuses more slowly in water
- Water is more dense and viscous than air
- Metabolic cost of gill ventilation is high relative to cost of aerial ventilation

Diffusion Rates

- $\mathrm{dV} / \mathrm{dt}=\mathrm{A} * \mathrm{~K}^{*} \mathrm{dP} / \mathrm{D}$
$-\mathrm{dV} / \mathrm{dt}=\underline{\text { volume }}$ of gas diffusing / unit of time
$-\mathrm{A}=\underline{\text { area }}$ available for diffusive exchange
$-K=\underline{\text { diffusion constant for gas }}$
$-\mathrm{dP}=$ partial pressure difference
$-\mathrm{D}=$ diffusion distance

Partial pressure and concentration

- $\mathrm{P} x=$ partial pressure
- $\mathrm{Cx}=$ concentration
- $\mathrm{Px} *(\underline{\text { solubility }}$ coefficient $)=\mathrm{Cx}$

Oxygen saturation mg / L in Fresh and Sea Water at sea level		
Temp	Fresh	Seawater
0	14.7	11.7
5	12.8	10.4
10	11.3	9.3
15	10.1	8.5
20	9.1	7.8

CO 2

- Enters into incomplete reaction with water to become acid $\mathrm{H}_{2} \mathrm{CO}_{3}$

Ammonia NH3

- Toxic compound from metabolic processes that must be rapidly removed.

Branchial Pump in Fish

- Drives the gill diffusion system
- Varies in evolution of different fish groups
- More active in fish that do not swim
- Powerful and unique system that maximizes diffusion

Typical bony fish 4 branchial arches

Buccal
Cavity

Typical bony fish 4 branchial arches

Filaments and associated structures attached to two neighbouring branchial arches.

Schematic and transmission electron micrograph of a cross section through an outer port a teleost (rainbow trout) lamella.

cytoplasmic flanges (PF

Physiological Reviews

Fig. 7.4 The structure of the teleost gill and counter-current flow of blood and water. (a) Portions of two adjacent gill arches bearing double rows of filaments, which interlock at the tips-a passive posture due to the elasticity of the gill rays. Each filament bears rows of alternating lamellae on upper and lower faces in which the capillary blood flow runs counter to the flow of the water stream between the lamellae, (b) At higher magnification, part of a single filament with three lamellae above and below. (c) Diagrammatic representation of part of the seive-like arrangement provided by the filaments (3) and lamellae in the trench; the water flow is at right-angles to the page. (Hughes ${ }^{39}$)

Fig. 1. The circulation in the-gill filament of a typical teleost. (From Randall, Perry \& Heming, 1981b.) \qquad
A. Branchial artery Efferent filament artery

Afferent arch artery
Arterio-venous anastomosis

drainage

http://www.fishdoc.net/disease/gilldisease.htm

http://training.fws.gov/ec/fish/histo1.html

Diffusion Rates for Respiratory Gas

Fick's law of simple diffusion (diffusion constant, surface area, membrane thickness, partial pressure gradient)

- $\mathrm{dV} / \mathrm{dt}=\mathrm{A} * \mathrm{~K} * \mathrm{dP} / \mathrm{D}$
$-\mathrm{dV} / \mathrm{dt}=$ volume of gas diffusing / unit of time
$-\mathrm{A}=$ area available for diffusive exchange
$-K=$ diffusion constant for gas $(\mathrm{cm} / \mathrm{sec})$
$-\mathrm{dP}=$ partial pressure difference (to be determined or estimated)
$-\mathrm{D}=$ diffusion distance

Atmospheric Gas Concentrations

- The pressure exerted by gas in a mixture is the partial pressure of that gas.
- The major components of dry air are nitrogen (approximately 78.98%) and oxygen (approximately 20.98%).CO2 is $\sim 0.04 \%$
- The partial pressure from nitrogen is ~ 0.79 times $760 \mathrm{~mm} \mathrm{Hg},=600.2 \mathrm{~mm} \mathrm{Hg}$ or torr.
- Oxygen, ~ 21% of 760 mm Hg , equals 159.5 mm Hg or torr.

Partial pressures - Air vs Water

- In Air - easy to determine PP since with temperature changes PP changes are minor
- E.g. $10 \mathrm{C}^{\circ}$ to $30^{\circ} \mathrm{C}$ changes 7% in air
- Water - PP highly affected by temperature
-10 to $30^{\circ} \mathrm{C}=33 \%$ change water

Henry's Law

- Concentration of Dissolved gas $=$ Partial pressure of gas x Solubility coefficient
- The solubility coefficient is a measure of how easily the gas dissolves in the liquid. In water the solubility coefficient (Henry's coefficient) for oxygen is 0.024 , and for carbon dioxide it is 0.57 . Thus carbon dioxide is approximately 24 times as soluble in water as oxygen.

Partial Pressure Gradient

- Water and blood are driving force for diffusion
- Mean partial pressure between blood and water can be estimated
- 1/2 (Pi gas +Pe gas $)-1 / 2(\mathrm{P} a$ gas +Pv gas $)$
- Where i is inside, e is external; a is arterial and v is venous gas tension.

Partial pressure difference or gradient

- Concentration $=$ solubility coefficient x P O 2 , therefore

$$
\underline{\mathrm{PO} 2}=\text { concentration } / \text { solubility }
$$

- Solubility of O2 in blood versus water
- Water $=0.066 \mathrm{~mL} / \mathrm{L}$ per mm Hg
- Blood $=1.5 \mathrm{~mL} / \mathrm{L}$ per $\mathrm{mm} \mathrm{Hg}(=23 \mathrm{X}$ water)

Comparisons Oxygen Conc.

Blood	Water
- $\mathrm{O} 2=30 \mathrm{~mL} / \mathrm{L}$	$\mathrm{O} 2=10 \mathrm{~mL} / \mathrm{L}$

- Which way will this diffuse?

Answers

- Concentration/solubility

Answer? and WHY?

- Blood: $\mathrm{PO} 2=30 / 1.5=\underline{20 \mathrm{~mm} \mathrm{Hg}}$

versus

- Water: P O2 = $10 / 0.066=\underline{150 \mathrm{~mm}} \mathrm{Hg}$

Therefore O 2 will diffuse down the partial pressure gradient from water to blood, despite the fact that concentration gradient is in the opposite direction

Hemoglobin, the Magic Molecule

- Tetrameric molecule in most fish
- Two alpha two beta chains

Four disks $=$ where the oxygen molecules bind four sausage shapes represent polypeptide chains

$$
\mathrm{Hb}+4 \mathrm{O}_{2}=\mathrm{Hb} \cdot 4 \mathrm{O}_{2}
$$

- O 2 binds to the four heme groups
- $\mathrm{H}+$ and CO 2 bind to specific amino acid residues in globin chain

Preparation for Thursday

Readings, prepare questions

