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Abstract.—The development and application of fish bioenergetics models have flourished in recent years,

due in part to the complexity of the issues being faced by fisheries biologists. As with any model, the accuracy

of bioenergetics models can be hampered by uncertainty in model parameters. A review of the literature

showed that field and laboratory tests of bioenergetics models often result in poor agreement between model

predictions and independent data. Nonetheless, bioenergetics modeling continues to be used to make

important management decisions. Recent tests of model predictions have shown that parameter uncertainty is

influenced by factors such as feeding rate, physiological adaptations, and prey composition and abundance. In

an attempt to reduce the uncertainty in modeling applications, we propose a framework that highlights the

importance of (1) model evaluation, (2) hypothesis-based parameter testing, and (3) improved communication

between model developers and model users. Adherence to this framework will help reduce uncertainty in

modeling applications and simultaneously contribute to a broader knowledge of fish physiology and feeding

ecology.

Bioenergetics models provide a sound theoretical

approach for estimating energy allocation in animals by

partitioning consumed energy into three basic compo-

nents: (1) metabolism, (2) wastes, and (3) growth

(Winberg 1956). Because the models are based on

mass-balance equations, they are often used to estimate

growth or consumption given information on other

variables. Bioenergetics models are particularly attrac-

tive for estimating food consumption by free-ranging

fishes because of the time and effort required for more

traditional approaches (Kitchell et al. 1977). Today

these models are widely used as a tool in fisheries

management and research; the availability of user-

friendly software has led to the popularity of

bioenergetics models (Figure 1; Hanson et al. 1997).

Nonetheless, the proliferation of bioenergetics model-

ing has not been without controversy (Ney 1993).

Expansion and application of bioenergetics models

have generally proceeded without parallel efforts to

evaluate model reliability. This disparity was first

highlighted in a symposium organized by Bevelheimer

and Wahl at the 1989 Annual Meeting of the American

Fisheries Society. Several papers presented there and

later published in the primary literature (Beauchamp et

al. 1989; Boisclair and Leggett 1989; Wahl and Stein

1991) raised concerns about the accuracy and applica-

tion of these models. As part of a 1992 symposium

(Hansen et al. 1993), Ney (1993) conducted a review of

models developed at that time and found poor

agreement between field-derived measures of con-

sumption or growth and bioenergetics estimates in four

of six published studies. Ney (1993) proposed several

directions for improvement and suggested that, in the

meantime, the models should be used for making

relative comparisons rather than quantitative predic-

tions. In a summary paper, Hansen et al. (1993) called

for additional field and laboratory tests of bioenergetics

models.

The recent symposium organized by Hartman et al.

(this issue) highlighted the diversity of models being

developed and the increased number of ways in which

these models are being used (e.g., Petersen and Kitchell

2001; Trudel et al. 2001; Harvey et al. 2002). Given the

popularity of bioenergetics modeling, we felt it would

be useful to revisit the concerns posed by Ney (1993)

and assess progress made since that time. To accom-

plish this, we summarized studies from 1980 to 2004

that conducted laboratory or field tests of bioenergetics

models. In 1992, only six studies had evaluated

bioenergetics models (Ney 1993). Our analysis provid-

ed a much larger sample size (n ¼ 32) upon which to

judge model performance. We also explored how

bioenergetics models are used in present-day applica-

tions by considering whether models were used as
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qualitative tools for hypothesis testing or quantitative

tools for prediction. When used for the latter, we

grouped studies based on whether the model in question

had been evaluated. We discuss insights gained from

model evaluations and conclude by proposing guide-

lines for the development and use of bioenergetics

models that highlight the importance of model testing

and the interface between research and management as

a means for reducing model uncertainty.

Model Development

Like other mathematical models, bioenergetics

models are simplifications of reality. How well they

describe the real world depends on appropriate

parameterization of the model and the accuracy of

input data used to drive them (Bartell et al. 1986).

Consider, for example, the variables used to estimate

fish respiration. Respiration rate is usually measured

across a range of fish sizes and water temperatures and

then expressed as a function of these two variables. In

most cases, such formulations provide reasonable

estimates of respiration rate. But what if other factors,

such as dissolved oxygen concentration, also affect

respiration rate? Applying the model under variable

oxygen concentrations, we might find that respiration

rate is poorly defined because our parameter estimate is

based on incomplete data. We could argue that this is a

poorly parameterized model for ecological application

or an inappropriate application of an otherwise

descriptive model. In our view, the burden of rectifying

this dichotomy lies with both model developers and

users. Calibration of bioenergetics models, in itself,

should not be the endpoint in model development.

Rather, we argue that bioenergetics models need to be

confronted with data as an important step in the model

development process. Only by evaluating the perfor-

mance of model output do we gain insights into model

limitations; this knowledge can lead to improvements

in model reliability by directing efforts at recalibrating

model parameters and generating new hypotheses

about parameter formulations (Hilborn and Mangel

1997).

Model Evaluation

Because bioenergetics models are based on a sound

theoretical footing (e.g., thermodynamics), they pro-

vide a useful template for evaluating energy flow.

Indeed, there is no evidence that conceptual models for

mass-balance energy budgets are wrong (Ney 1993).

When model output poorly represents observed data,

one of several things may be true: (1) the model is

incorrectly parameterized, (2) the input data used to

drive the model are inaccurate, (3) the independent data

being compared with the model results are wrong, or

(4) some combination of the above.

Laboratory data, field observations, or both provide

measures for model evaluation. Field evaluations

account for natural feeding patterns and environmental

effects, but represent a challenging means for model

validation because accurate consumption estimates are

difficult to obtain in free-ranging fishes (Diana 1983).

Aside from being time and labor intensive, traditional

methods for estimating food consumption rely on

models and assumptions that could also be subject to

error, thereby making it difficult to objectively evaluate

bioenergetic model predictions. Admittedly, when

discrepancies between field data and model predictions

arise, it can be difficult to distinguish which of the

previous outcomes (or explanations) was true. In the

laboratory, sampling error can be significantly reduced,

thus minimizing the influence of outcomes 2–4 above.

For this reason, laboratory tests provide an important

precursor to model corroboration because they help

identify uncertainty in model output (Ney 1993;

Madenjian et al. 2006). To characterize the perfor-

mance of bioenergetics models, we reviewed published

studies from 1980 to 2004 using electronic searches in

BIOSIS with keywords ‘‘bioenergetic’’ and ‘‘model.’’

We chose this 24-year time period because it probably

captured most, if not all, studies that evaluated

bioenergetics models. During this period, a total of

32 studies compared model predictions with values

observed in either the field or laboratory (Figure 1).

Field Tests

We found 17 studies in which field tests of

bioenergetics models were conducted (Table 1). All

but one of these studies estimated food consumption in

FIGURE 1.—Trends in the use of bioenergetics models from

1980 to 2004 as revealed by a literature search in BIOSIS with

the keywords ‘‘bioenergetics’’ and ‘‘model.’’ The Pearson

correlation coefficient and significance level are given.
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the field and compared those estimates with the

predictions of a bioenergetics model. Model predic-

tions were obtained by inputting field estimates of fish

growth. A single study used the model to predict

growth and compared that with field estimates (Burke

and Rice 2002). Field studies included a wide range of

fish species across a number of trophic guilds (Table

1). Studies also included both juvenile and adult fishes.

For comparative purposes, we calculated the percent

difference between the model and field estimates

reported in each study as ([modeled value � observed

value]/observed value) 3 100 (Ney 1993).

Field tests of bioenergetics models generally re-

vealed poor fits between model predictions and field

estimates. The percent difference between field and

model estimates ranged widely, from�84% toþ770%.

A few studies showed reasonable agreement (,15%)

between field estimates and bioenergetics predictions;

these included models for lake trout (þ0.2%; Maden-

jian et al. 2000), largemouth bass (þ8%; Rice and

Cochran 1984), and sockeye salmon (þ10%; Beau-

champ et al. 1989). The remainder of the studies (82%)

found substantially higher discrepancies, implying poor

fits between field and model estimates. Moreover, in a

majority of these studies (82%), model estimates of

food consumption were higher than those calculated

from field-derived diet data. The three exceptions were

one study of northern pikeminnow (Petersen and Ward

1999) and two of yellow perch (Boisclair and Leggett

1989; Schaeffer et al. 1999).

To explore the factors associated with potential

model error, we examined all of the studies published

in the peer-reviewed literature that compared bioener-

getics predictions with field data. These studies

probably vary both in the quality of data collected

and in the rigor of statistical evaluation that could

influence the level of agreement with bioenergetics

model predictions. As a result, we summarized a

number of metrics that could influence the precision of

field estimates and agreement with model values,

including the number of months and years of field data

collected, sample size, the age-classes examined, and

the number of analytical techniques used. We com-

pared each metric across studies against the maximum

percent difference (absolute value) reported for each

study (Table 1) as well as the range in percent error. As

might be expected, studies varied widely in both of

these measures (Table 1). The majority of studies

examined a single age-class with a few examining three

or more. Expanding evaluations of model performance

to examine multiple age-classes, particularly older

ages, would be useful. A surprising number of studies

(29%) did not use any statistical or analytical

techniques to assess fits between model predictions

and values determined in the field. We compared

percent difference reported for these studies (Table 1)

with those that used one or more analytical techniques

and found higher maximum (t-test; P ¼ 0.05) and

greater range (P ¼ 0.05) in percent difference for

studies using no analytical techniques. Many studies

calculated food consumption using multiple years of

field data, but about half of these examined only a

single year. Months examined within a year also varied

substantially, ranging from 1 to 12 months. Examining

a high number of months and years would be important

for capturing temporal variation in food consumption

TABLE 1.—Summary of studies published since 1980 comparing field estimates with bioenergetics model predictions. All

estimates are for food consumption except that for southern flounder, which is for growth. Positive values for percent differences

indicate that model estimates were higher than field estimates.

Species
Percent

difference Months Years N
Age-

classes
Analytical
techniques Reference

Sauger Sander canadensis þ2 to þ770 12 2 1,114 2 0 Minton and McLean (1982)
Northern pike Esox lucius þ24 to þ56 8 3 1,290 2 0 Diana (1983)
Largemouth bass Micropterus salmoides þ8 6 1 413 1 3 Rice and Cochran (1984)
Sockeye salmon Oncorhynchus nerka þ10 to þ15 4 2 391 1 3 Beauchamp et al. (1989)
Yellow perch Perca flavescens �51 to þ3 5 1 4,200 3 1 Boisclair and Leggett (1989)
Walleye Sander vitreus þ40 1.5 1 360 1 1 Fox (1991)
Esox spp. þ39 to þ52 6 3 2,933 1 3 Wahl and Stein (1991)
Baltic herring Clupea harengus membras �30 to þ89 4 1 1,885 1 1 Arrhenius (1998)
Walleye pollock Theragra chalcogramma þ5 to þ17 1 1 300 1 0 Ciannelli et al. (1998)
Perch 0 to þ162 1 1 240 1 0 Worischka and Mehner (1998)
Zander Sander lucioperca þ18 to þ193 1 1 240 1 0 Worischka and Mehner (1998)
Northern pikeminnow Ptychocheilus oregonensis �19 to �84 5 4 – – 2 Petersen and Ward (1999)
Yellow perch �25 to �50 6 2 5,315 4 2 Schaeffer et al. (1999)
Striped bass Morone saxatilis þ0.3 to þ71 1 1 741 1 0 Hartman (2000)
Lake trout Salvelinus namaycush þ0.2 2–3 1 1,108 6 1 Madenjian et al. (2000)
Lake trout þ30 to þ80 1 1 57 7 2 Trudel and Rasmussen (2001)
Southern flounder Paralichthys lethostigma þ50 1 1 28 1 1 Burke and Rice (2002)
Chinook salmon Oncorhynchus tshawytscha þ22 5 1 142 5 1 Madenjian et al. (2004)
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and could affect agreement with model predictions. We

found increased disagreement between field estimates

and model predictions when more months were

included for both maximum (Pearson correlation: P ¼
0.02, r¼0.56) and range (P¼0.02, r¼0.54) in percent

difference (Table 1). However, we found no relation-

ship between either number of years (P . 0.77, r ¼
0.02–0.07) or total number of months (N of months 3

N of years: P . 0.07, r¼ 0.39–0.44) sampled and the

maximum or range in percent difference reported.

These results suggest that disagreement between

bioenergetics estimates and field data are largest when

attempting to account for seasonal variation in food

consumption.

Total sample size was also highly variable, but

needed to be adjusted to account for the number of

intervals examined to accurately reflect sampling

effort. We divided sample size by the total number of

months and number of age classes examined to

determine the mean number of stomachs examined

per month for each age-class. We found no relationship

between this measure of sample size and differences

between field observations and model predictions (P .

0.74, r¼�0.05 to�0.08). In fact, some of the studies

that had the largest sample sizes and used the most

rigorous analytical techniques found the greatest

disagreement between field estimates and model

predictions. As an example, we highlight six studies,

three with good agreement (largemouth bass, Rice and

Cochran 1984; sockeye salmon, Beauchamp et al.

1989; Madenjian et al. 2000) and three with poor

agreement (yellow perch, Boisclair and Leggett 1989;

esocids, Wahl and Stein 1991; yellow perch, Schaeffer

et al. 1999; Table 1), that all sampled over multiple

months and years and employed a suite of analytical

tools. Interestingly, the three studies that showed poor

agreement between field and model estimates included

2–4 times as many stomachs per age-class per sampling

interval (months and years). Based on these results, we

believe that differences between predicted and ob-

served values are not primarily related to issues with

field estimates and that other factors inherent in making

predictions with bioenergetics models must be consid-

ered.

Laboratory Tests

We found 15 studies in which laboratory tests of

bioenergetics models were conducted, covering a wide

range of species and life stages (Table 2). Three studies

compared estimates of growth and seven assessed food

consumption, with five comparing both growth and

food consumption. About half the studies fed fish ad

libitum rations, whereas the remainder varied feeding

levels from maintenance to ad libitum. Percent

difference between observed and predicted values

ranged from �110% to 122% for estimates of growth

and from �63 to �328% for estimates of food

consumption (Table 2); on the average, percent

difference did not differ between growth or food

consumption (t-test; P . 0.40 for maximum and

range). As a result, in subsequent analyses we used

estimates of error for both measurements to compare

across studies, choosing only values for food con-

sumption from any single study whenever they were

both presented to allow more direct comparisons with

field studies. Across all studies, disagreement between

observed and predicted values from laboratory evalu-

ations was comparable with that determined in the

field. Unlike field studies, however, those in the

laboratory revealed a more even distribution between

studies that showed model under- and overestimates,

and this was the case for both consumption and growth.

As with field studies, these laboratory studies

probably varied both in the quality of data collected

and in the rigor of statistical evaluation that could

influence the level of agreement with bioenergetics

model predictions. As a result, we summarized a

number of metrics that could influence precision and

agreement with model values, including number of

days and intervals examined, number of experimental

units used, the number of age-classes, ration levels and

temperature ranges examined, and the number of

analytical techniques used. The experimental units

used for reporting percent error and sample sizes varied

by study (e.g., individual fish, means within or across

tanks). Whenever possible we either chose from the

reported values or recalculated tabled values to avoid

pseudoreplication and to maintain consistency in the

data used to calculate both percent error and each of the

metrics (Table 2). As with field studies, we compared

each metric across studies against the maximum

percent difference (absolute value) reported for each

study (Table 2), as well as the range in percent error.

Studies varied widely in most of the metrics examined

(Table 2) except that most studies examined a single

age-class with only a few examining two and none

examining more than two. Limited number of studies

with older age-classes is probably due to the difficulty

of holding adult fish in captivity and suggests the need

for additional laboratory tests with large fish. Unlike

field studies, the majority of laboratory studies (86%)

used at least one and often several statistical or

analytical techniques to assess fits between model

predictions and observed values. We compared percent

difference reported for those studies that used none or

one against those that used two or more analytical

techniques. As might be expected given the greater

overall analytical rigor possible in laboratory studies,
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we found no difference in the maximum (t-test; P ¼
0.53) and range of percent difference (P ¼ 0.80) for

studies using more statistical techniques.

The length of studies ranged from a low of 4 d (for

larval fish) to close to a year, with longer studies

generally sampling more intervals to estimate error

rates against model predictions (Table 2). Unlike in the

field studies, we found no relationship under more

controlled laboratory conditions between the maximum

or range in percent difference from model predictions

and the total number of days (Pearson correlation: P .

0.78, r , 0.08), intervals (P . 0.62, r , 0.14), or days

per interval (P . 0.75, r , 0.10) examined. We also

found no relationship between the number of experi-

mental units (Table 2) used to determine error rates and

both measures of differences between laboratory

estimates and model predictions (P . 0.35, r ,

0.24). In general, laboratory studies appear to be using

adequate numbers of experimental units to test

bioenergetic models.

Unlike with study duration, we did find positive

relationships between percent error and the number of

ration and temperature treatments examined. Labora-

tory tests of bioenergetic models have included a wide

range of temperatures, ranging from 4 to 358C (Table

2). We found increased disagreement between labora-

tory estimates and model predictions when a broader

range of temperatures were examined for both

maximum (Pearson correlation; P ¼ 0.01, r ¼ 0.62)

and range (P ¼ 0.005, r ¼ 0.66) in percent difference

(Table 2). Similarly, when more individual temperature

treatments were examined we also found higher

percent differences as determined by the maximum

(P ¼ 0.05, r ¼ 0.66) and range (P ¼ 0.002, r ¼ 0.70)

values. The number of ration levels examined and the

total number of unique treatments (ration levels,

temperatures and ages combined) were also positively

related to maximum (P , 0.04, r . 0.67) and range (P
, 0.004, r . 0.68) in percent error. These results

clearly suggest that disagreement between bioenerget-

ics models and laboratory data are largest when

attempting to account for a range of temperatures and

variable ration levels on model estimates. These effects

appear to be more important than study duration and

the number of experimental units examined in

laboratory studies.

Insights Gained from Model Evaluations

Four patterns emerged from our review of field and

laboratory tests of bioenergetics models: (1) uncertainty

in model predictions varies considerably among and

within species; (2) disagreement between observed and

predicted values was similar for field and laboratory

tests; (3) bioenergetics estimates of food consumption

were generally higher than those determined from field-

based sampling; and (4) the error in bioenergetics esti-

TABLE 2.—Summary of studies comparing laboratory estimates of food consumption (FC) or growth (GR) with bioenergetics

model predictions. Positive values for percent differences indicate that model estimates were higher than laboratory estimates.

For each study, we determined the number of days the experiment was conducted, the number of intervals over which fish were

measured (INT), the number of experimental units (N) and analytical techniques (AT) used, the number of age-classes, the

number of rations, and the temperatures examined.

Species Estimate Ration Percent difference Days INT

Age-0 striped bass FC Ad libitum �3 to þ46 12 1
GR Ad libitum �110 to þ62 12 1

Age-1 striped bass, bluefish Pomatomus saltatrix,
and weakfish Cynoscion regalis

FC Varied �11 to þ16 12 1
GR Varied �76 to þ122 12 1

Largemouth bass FC Varied �28 to þ8 63 9
Powan Coregonus lavaretus FC Ad libitum �37 to þ33 4 1
Hybrid sunfisha FC No food 2–14 d �18 to �25 105 1

GR No food 2–14 d þ24 to þ37 105 1
Lake trout FC Varied �33 to þ59 364 12
Largemouth bass GR Varied �70 to þ44 182 3
Tiger muskellungeb FC 25–100% þ4 to þ328 140 10
Yellow perch GR Ad libitum þ23 to þ27 135 9

GR No food 12 d �21 to �23 135 9
Burbot Lota lota FC Ad libitum �63 to þ1 11 1

GR Ad libitum 0 to þ11 11 1
Smallmouth bass

Micropterus dolomieu
FC Ad libitum �17 to þ13 21 1

White crappie Pomoxis annularis FC Varied �43 to þ224 70 1
GR Varied þ15 to þ43 70 1

Western mosquitofish Gambusia affinis FC Varied �33 to þ181 11 1
Chinook salmon FC Ad libitum �14 to þ11 99 3
Largemouth bass GR Varied �60 to þ10 14 1

a Green sunfish Lepomis cyanellas 3 bluegill L. macrochirus.
b Northern pike 3 muskellunge Esox masquinongy.
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mates increases when trying to account for variable water

temperatures and feeding rates. Based on this summary,

it is clear that attempts to corroborate bioenergetics

models will continue to be met with mixed success.

Ney (1993) highlighted several areas that he

believed reduced the reliability of bioenergetics models

when used for predictive purposes, and we agree with

those assessments. He argued that borrowing parameter

values from other species (see also Trudel et al. 2004)

and extrapolating models beyond the limits of their

design (e.g., extrapolating from small fish to large fish)

should be avoided. Ney (1993) also called for work on

the activity components of energy budgets and stressed

the importance of accurate field data (e.g., water

temperature and seasonal prey energy density) when

using bioenergetics models. These ideas provide

direction for improving the reliability of bioenergetics

models by focusing attention on the quality of

information needed to assemble and drive the models.

Here, we focus on the importance of parameter

uncertainty in bioenergetics models and highlight three

issues that contribute to model error as evidenced by

recent studies.

Consumption-Dependent Error

The link between ration size and the accuracy of

bioenergetics models has been well documented

(Madenjian and O’Connor 1999; Chipps et al. 2000b;

Bajer et al. 2004b; Chipps and Wahl 2004; Madenjian

et al. 2006). This phenomenon, termed ‘‘consumption-

dependent error,’’ appears to be widespread among

bioenergetics models and occurs when model accuracy

varies as a function of food consumption (Bajer et al.

2004b). Moreover, the same general pattern appears

across a range of species; namely, that bioenergetics

models overestimate food consumption for fishes

feeding at low rations and underestimate food con-

sumption for fishes feeding a high rations (Table 3).

Several hypotheses have been proposed to explain the

influence of ration size on the accuracy of model

predictions. Logically, several authors have pointed to

consumption-dependent parameters in bioenergetics

models as the source of error in model estimates (Wahl

and Stein 1991; Chipps et al. 2000b; Bajer et al.

2004b). The idea that consumption-dependent param-

eters such as egestion, excretion, and specific dynamic

action should be modeled as a function of ration size

rather than fixed proportions of consumed energy is not

new (Elliot 1976; Wahl and Stein 1991; Chipps et al.

2000b). For many bioenergetics models, estimates of

waste losses are based on limited data from few species

and are assumed to represent a constant proportion of

consumed energy. In many taxa conversion efficiency

declines at high ration levels, implying that waste

losses should not be modeled as fixed proportions of

consumed energy (Wahl and Stein 1991; Chipps et al.

2000b). Indeed, reducing waste losses (as a percentage

of consumed energy) for fish fed low rations reduces

TABLE 2.—Extended.

Species N AT Age-classes Ration Temperature (8C) Reference

Age-0 striped bass 28 0 1 1 7, 20 Hartman and Brandt (1993)
28 0 1 1 7, 20 Hartman and Brandt (1993)

Age-1 striped bass, bluefish Pomatomus saltatrix,
and weakfish Cynoscion regalis

22 0 2 1 19–25 Hartman and Brandt (1995)
22 0 2 1 19–25 Hartman and Brandt (1995)

Largemouth bass 8 3 1 2 22, 27 Whitledge and Hayward (1997)
Powan Coregonus lavaretus 22 1 1 1 10–15 Huuskonen et al. (1998)
Hybrid sunfisha 3 1 1 3 24 Whitledge et al. (1998)

3 1 1 3 24 Whitledge et al. (1998)
Lake trout 12 2 2 3 3–10 Madenjian and O’Connor (1999)
Largemouth bass 79 2 1 2 2–15 Wright et al. (1999)
Tiger muskellungeb 40 1 1 4 7.5–25 Chipps et al. (2000b)
Yellow perch 20 1 2 1 21 Bajer et al. (2003)

20 1 2 1 21 Bajer et al. (2003)
Burbot Lota lota 12 3 2 1 12–19 Paakkonen et al. (2003)

12 3 2 1 12–19 Paakkonen et al. (2003)
Smallmouth bass

Micropterus dolomieu
3 2 2 3 22, 27 Whitledge et al. (2003)

White crappie Pomoxis annularis 6 1 2 3 23–30 Bajer et al. (2004a)
6 1 2 3 23–30 Bajer et al. (2004a)

Western mosquitofish Gambusia affinis 18 2 1 3 10–35 Chipps and Wahl (2004)
Chinook salmon 12 2 1 1 12 Madenjian et al. (2004)
Largemouth bass 18 3 1 2 12–32 Slaughter et al. (2004)

BIOENERGETICS MODELING IN THE 21ST CENTURY 303



the amount of energy needed to balance the model, in

turn, reducing the tendency of models to overestimate

food consumption. Of the 33 models available in Fish

Bioenergetics 3.0 (Hanson et al. 1997), only eight

models (24%) incorporate effects of ration size and

water temperature on estimates of waste loss.

Mechanisms affecting fish metabolism have also

been proposed to explain the influence of ration size on

the accuracy of model output (Brett and Groves 1979;

Madenjian and O’Connor 1999). In a laboratory study

of lake trout bioenergetics, model estimates of food

consumption were lower than observed values for fish

fed rations ad libitum (Madenjian and O’Connor 1999).

Because activity was considered negligible, the authors

postulated that increases in standard metabolism may

occur for fish feeding at high rates and therefore affect

model accuracy. Similarly, metabolic compensation

(i.e., reduced metabolic rate) may occur for fish

maintained on low rations, thus explaining why model

predictions tend to overestimate food consumption at

low feeding rates (Chipps and Wahl 2004).

Studies have shown that consumption-dependent

error can also propagate in bioenergetics models

independently of physiological changes. In a study of

juvenile tiger muskellunge, the simulated error in

metabolic rate had more influence on model accuracy

for fish fed low rations than for fish fed ad libitum

because it accounted for a higher proportion of the total

energy budget (Chipps et al. 2000b). Moreover, recent

studies have shown that fish fed fluctuating rations

grow significantly faster than those fed similar amounts

on a constant ration (Whitledge et al. 1998; Skalski et

al. 2005). As a result, estimates of model error were

higher for fish exhibiting a compensatory growth

response (fluctuating ration) and were believed to be

associated with physiological responses not accounted

for in bioenergetics models (Whitledge et al. 1998). In

a related study, however, Skalski et al. (2005) argued

that the increase in growth occurred independently of

any physiological changes because fish fed fluctuating

rations initially remained smaller for a longer period of

time, thus incurring lower cumulative maintenance

costs over the growth interval.

Many of the hypotheses involving consumption-

dependent error remain untested. Given the scope of

this problem we believe that prioritizing research in this

area will significantly improve the reliability of model

estimates. As a start, we argue that bioenergetics

models need to incorporate the effects of ration size on

metabolic functions. Specifically, relationships among

growth, metabolic rate (standard and activity) and

waste losses inherent in bioenergetic models need to be

determined as a function of ration size. Resolving these

issues will be especially important when applying

bioenergetics models to field conditions where con-

sumption rate is known to be variable.

Physiological Adaptations

Regional differences in species physiology can have

an important influence on the accuracy of parameter

estimates. Although little attention has been paid to this

topic, evidence suggests that physiological responses

differ between populations. Munch and Conover

(2002) found that regional differences among popula-

tions of Atlantic silverside Menidia menidia accounted

for significant variation in weight-dependent consump-

tion and the proportion of energy lost to excretion and

egestion. All else being equal, northern populations of

silversides consumed 37% more than southern popu-

lations at 248C (Munch and Conover 2002). Differ-

ences in consumption and metabolism have also been

observed as a function of latitude for muskellunge

(Clapp and Wahl 1996) and walleye (Galarowicz and

Wahl 2003). Although incorporating these effects into

bioenergetics models is straightforward, information on

regional physiological differences is often lacking for

many species.

Subtle physiological adaptations can also have an

important influence on accuracy of bioenergetics model

predictions. In juvenile muskellunge, metabolic rate

was significantly lower in winter months compared

with that in spring and summer at the same water

temperature (Chipps et al. 2000a). Hence, single-

season estimates of fish metabolism may affect the

reliability of model output if the model is applied

outside of the range for which parameters are defined.

TABLE 3.—Summary of laboratory studies examining the errors between model predictions and observed values for fish fed

either high (ad libitum) or low (,50% maximum) ration levels. All estimates are for food consumption except that for yellow

perch, which is for growth. Positive values indicate that model estimates were higher than observed values.

Species Low ration High ration Reference

Lake trout þ40 to þ59 �33 to �13 Madenjian and O’Connor (1999)
Tiger muskellunge þ59 þ4 Chipps et al. (2000b)
Smallmouth bass þ13 �17 Whitledge et al. (2003)
Yellow perch �23 to þ20 þ22 to þ27 Bajer et al. (2003)
White crappie þ82 to þ218 �19 Bajer et al. (2004a)
Western mosquitofish þ58 to þ181 �33 to þ25 Chipps and Wahl (2004)
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Similarly, in most bioenergetics models, physiological

responses to environmental conditions are driven by

water temperature. Yet factors such as dissolved

oxygen concentration, salinity, and turbidity are known

to affect physiological responses, but they are not

usually included in parameter formulations (Cech et al.

1985; Niklitschek 2001; Sweka and Hartman 2001). In

western mosquitofish, respiration rate varied signifi-

cantly with dissolved oxygen concentration (Cech et al.

1985) and had important implications for model

application (Chipps and Wahl 2004). These examples

illustrate some of the constraints on existing models,

but more importantly should prompt model developers

to include hypothesis testing as a component of

parameter estimation and model users to question

whether the model is appropriately specified for the

application being considered (see A Framework for

Model Development and Application below).

Effect of Prey Composition and Abundance

Activity rate multipliers are often used in bioener-

getics models to account for fish activity but have long

been criticized as a variable (unknown) component of

fish energy budgets (Boisclair and Leggett 1989;

Boisclair and Sirois 1993; Madon and Culver 1993).

Recent studies using glycolytic enzymes (lactate

dehydrogenase) have linked activity levels in fish with

variability in prey composition and abundance (Sher-

wood et al. 2002; Selch and Chipps 2007; Rennie et al.

2005). In a study of fast and slow growing yellow

perch populations, Rennie et al. (2005) showed that

fish from a fast growing population consumed less

food than perch from a slow growing population. They

attributed slow growth to increased activity levels

resulting from differences in prey composition and

abundance. Similarly, prey size and morphology are

known to affect capture success (Wahl and Stein 1988;

Einfalt and Wahl 1997) and can influence activity level

in fish predators (Sherwood et al. 2002). In a laboratory

study using largemouth bass predators and bluegill

prey, activity levels of largemouth bass scaled

positively with prey size (Selch and Chipps 2007).

Subsequent bioenergetics modeling revealed substan-

tial error in model predictions for bass foraging on

large bluegills, presumably due to increased activity

costs of capturing large prey that were not accounted

for in the model.

In their present form, bioenergetics models do not

account for the influence of prey composition or

abundance on feeding-related activities. However, in

most modeling platforms activity can be modeled as a

function of prey density if relationships between

activity and prey abundance are known. In a study

with juvenile walleyes, Madon and Culver (1993)

showed that fish activity scaled positively with

zooplankton biomass. They demonstrated that fits

between observed and predicted food consumption

were improved by modeling activity as a function of

prey biomass. These examples highlight the influence

of prey composition and abundance on foraging-related

activity and demonstrate that model performance can

be improved by accounting for these effects in

parameter formulations.

Bioenergetics models have also been linked with

foraging models to test hypotheses about factors

affecting fish growth. These linked (or mechanistic)

models account for prey composition and abundance

via functional feeding responses and can provide

important insights into factors constraining fish growth.

In a study with brown trout Salmo trutta, Hayes et al.

(2000) combined a bioenergetics model with a detailed

foraging model to identify factors affecting lifetime

growth rate of drift-feeding brown trout. A similar

approach was used with a bioenergetics model for

sockeye salmon to evaluate the influence of water

temperature, prey density, and vulnerability to preda-

tion on the growth rate of kokanee (lacustrine sockeye

salmon; Stockwell and Johnson 1997, 1999). Although

the modeling formulations and data requirements for

foraging models can be complex, when combined with

bioenergetics modeling, they provide a powerful

approach for evaluating the influence of prey abun-

dance and composition on growth rate of fishes.

Model Applications

Relative versus Absolute Uses

The development and application of bioenergetics

models has increased appreciably since the early 1980s.

Our review of the literature revealed that the number of

published studies increased from a few per year in the

early 1980s to about 20 per year in the 2000s (Figure

1). Clearly, bioenergetics modeling has become widely

used as a tool in fisheries research and management.

Yet when confronted with data, few models seem to

reliably track feeding or growth under variable

conditions. Indeed, many bioenergetics models remain

untested, prompting us to question how they are being

used in present day applications. To explore this

question, we reviewed the literature during the decade

since the last bioenergetics symposium and located

articles that used bioenergetics models. We performed

an electronic search of journals in fisheries science and

ecology using the BIOSIS database. We included the

search terms ‘‘bioenergetic’’ and ‘‘model’’, for papers

published between 1994 through 2004. Out of 17

journals searched, we chose 6 journals that contained

the majority of relevant articles: Canadian Journal of
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Fisheries and Aquatic Sciences (CJFAS), Ecological

Applications (EA), Ecological Modeling (EM), Journal

of Fish Biology (JFB), North American Journal of

Fisheries Management (NAJFM), and Transactions of

the American Fisheries Society (TAFS). Since BIOSIS

only searched title, abstract, and keyword fields for

each reference article, we also conducted a visual issue-

by-issue search in three of the journals containing most

of the relevant articles during the 10-year period

(CJFAS, NAJFM, and TAFS). This yielded additional

papers not cited in the electronic search. We catego-

rized each study on the basis of whether it used

bioenergetics modeling to generate quantitative predic-

tions (e.g., for setting harvest goals, stocking require-

ments, or balancing predator–prey demand) or served

as a tool for hypothesis testing (Figure 2).

The use of bioenergetics modeling varied strongly

by the journal in which the study was published (Figure

3). Studies published in management-related journals

(i.e., NAJFM and EA) had a much higher percentage of

papers using models to generate quantitative predic-

tions. In these cases, models were used to address

questions such as predation mortality due to consump-

tion or to determine stocking rates based on estimates

of prey demand. In contrast, studies that used

bioenergetics models to explore hypotheses about such

topics as the effects of climate change on food

consumption or comparisons of feeding rates across

populations represented a larger proportion of the

studies published in CJFAS, EM, and JFB.

Previous authors have suggested that the accuracy of

model output could limit the application of models and

that they should not be used to answer important

management questions that require absolute measures

without further testing and evaluation (Wahl and Stein

1991; Ney 1993). To assess whether this advice was

being followed, we reviewed each of the 44 studies

published during 1994–2004 that generated quantita-

FIGURE 2.—Overview of qualitative versus quantitative applications of bioenergetics models in fisheries research and

assessment.
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tive predictions to see if they used a model that had

been evaluated. For the purpose of these comparisons,

we used a liberal definition of reliability—any single-

species model for which the agreement between model

output and independent data from any laboratory or

field study was less than 15% was considered reliable.

Using this criterion, we considered the models for

largemouth bass, sockeye salmon, walleye pollock, and

lake trout to be reliable. All of the other models

evaluated had a range of uncertainty greater than 25%,

in most cases substantially larger (Tables 1, 2). The

majority of the studies that used bioenergetics models

to generate predictive estimates did not use models we

considered reliable (89%, 39 out of 44). Of the five

studies that did, four were with sockeye salmon and the

fifth was with largemouth bass. These summaries

suggest that bioenergetics models continue to be used

for predictive purposes in guiding management deci-

sions despite lack of any evidence that they provide

reasonable estimates of growth or food consumption.

Moreover, with the exception of salmonine studies in

the Great Lakes (Stewart and Ibarra 1991; Rand and

Stewart 1998), there have been few follow-up attempts

to evaluate the success of management decisions that

were based on bioenergetics predictions.

The details of model formulation and constraints on

model use are not always transparent to users.

Ironically, the computing technology and software

programs that have made bioenergetics models so

accessible and easy to use can also contribute to

misuse. Of those studies making quantitative predic-

tions, the majority (82%, 36 out of 44) used

commercially available software (i.e., Fish Bioenerget-

ics 3.0). Encouragingly, a substantial number of these

authors (43% of the studies) modified the parameters in

the model in some fashion before applying the model

to their particular question. However, most of the

modifications were simply updates to temperature-

dependent functions using more recently published

data. The increased accessibility to bioenergetics

models has made it easy to perform complex

calculations and we encourage their use as a tool for

qualitative comparisons. However, when using bioen-

ergetics models to generate predictive estimates, we

propose a precautionary approach that embraces, rather

than averts, potential uncertainty in model output.

These concerns are beyond those related to extrapola-

tion of model results to the population level (i.e.,

estimates of population size), which is also difficult.

A Framework for Model Development
and Application

We offer several recommendations as a framework

for the development and application of bioenergetics

models. To reduce the uncertainty in modeling

applications, we highlight the importance of (1) model

evaluation under a broad range of conditions, (2)

hypothesis-based parameter testing, and (3) enhanced

communication between model developers and users as

a process for improving the dissemination of informa-

tion. We focus our attention on modeling applications

used for predictive purposes. Given the current state of

uncertainty with many models, we believe that

bioenergetics modeling is most powerful as a tool for

qualitative assessment. Nonetheless, bioenergetics

models are frequently used to generate quantitative

predictions for guiding management decisions, and it is

here that we propose guidelines for reducing uncer-

tainty in modeling applications.

We begin by illustrating the five basic steps of the

modeling process (Figure 4). For consistency, we use

the definitions presented in Haefner (2005) for the

following terms: (1) conceptual model, (2) mathemat-

ical model, (3) model verification, (4) model calibra-

tion, and (5) model evaluation. Model formulation

begins with a conceptual model of the parameters of

interest; in the classical view of energy budgets, this is

given as C ¼ M þ A þ SDA þ U þ F þ G, where

consumed energy (C) is balanced by the energy lost to

metabolism (M), activity (A), specific dynamic action

(SDA), excretion (U), or egestion (F) and that

transformed into growth (G). The conceptual model

is then expressed mathematically and translated into

computer code to construct a quantitative model, a

process that is termed verification. Calibration, in turn,

is the process of parameter estimation; in most cases,

controlled observations (experiments) are used to

FIGURE 3.—Percentages of papers by journal during 1994–

2004 that used bioenergetics models to make relative

comparisons or quantitative estimates based on the results

from bioenergetics modeling. The total number of papers

examined from each journal is given in parentheses. See text

for journal abbreviations.
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quantify relationships and develop predictive equations

for estimating model parameters (e.g., regression

constants; Haefner 2005). Finally, the model is

evaluated using independent data in an attempt to

validate model output. However, because models are

never truly validated (Hilborn and Mangel 1997;

Berkson et al. 2002), we use the term ‘‘corroborated’’

to refer to models that, when compared with indepen-

FIGURE 4.—Conceptual framework for reducing uncertainty in bioenergetics modeling applications (adapted from Haefner

2005). The flow diagram on the left depicts the general modeling process from conceptualization to evaluation. The steps

associated with evaluation and parameter testing are in bold type to highlight their importance in model development. The flow

diagram on the right depicts the steps that should be taken before model use or that provide feedback to model developers. The

interactions between model development and use (horizontal arrows) are crucial to establishing the level of uncertainty

associated with predictions (dashed arrow). To this end, it is important that model users document the success or failure of

management decisions based on bioenergetics predictions.
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dent data, provide reasonable agreement to observed

values. Generally speaking, the development of most

bioenergetics models has been considered complete

once the models have been calibrated. Indeed, there are

few instances where models have been adequately

evaluated as part of the development process.

The framework we present depicts a classical view

of the modeling process (Figure 4). With regard to

bioenergetics models, however, we emphasize two

important components: (1) the model evaluation phase

and (2) interactions between model developers and

model users. In the evaluation phase it is important that

models are tested across a broad range of conditions

(e.g., water temperature, feeding rate, prey density),

paying careful attention to the accuracy of the input

data used to drive it. Indeed, variation in input

parameters (i.e., 95% confidence limits) should be

included whenever possible by bracketing model

predictions to account for the uncertainty in external

variables (Hartman and Hayward 2007). When model

predictions provide poor fits (e.g., .25%) to observed

data, model developers should question whether (1) the

model is appropriately calibrated or (2) alternative

parameter formulations are needed, with the ultimate

goal of corroborating model output. For the latter, we

advocate that model developers pay particular attention

to issues involving consumption-dependent error,

physiological adaptations, and foraging-related activity

(e.g., prey type and abundance). Once a model has

been evaluated it is important that model users

recognize potential limitations to its performance.

How well did the model perform? Under what

conditions was the model evaluated? Did the authors

make any adjustments to model parameters or suggest

limitations to model application? In many of the studies

we reviewed, the authors offer advice for dealing with

model uncertainty that either helps improve the

reliability of model output (Bajer et al. 2004a;

Madenjian et al. 2006; Whitledge et al. 2006) or

identifies specific constraints to model use (Chipps et

al. 2000b; Chipps and Wahl 2004). As with all models

it is important to recognize the constraints associated

with model use; models corroborated using laboratory

data under a narrow set of conditions may be less

reliable in field situations than those corroborated

under a broad range of conditions in both the field and

laboratory. While the latter would be considered an

acid test of a bioenergetics model, in most cases

corroborated models should be used only within the

range of conditions under which they were evaluated.

Hence, we emphasize that model users consider the

conditions and constraints affecting model reliability.

An effort to adhere to our proposed framework will be

required by both model developers and model users.

Model developers need to incorporate model evalua-

tion as an important step in the development process

and translate these results into a context useful for

management application (Mace and Sissenwine 2002).

It follows that model users must recognize the

limitations of model predictions and question how

uncertainty in bioenergetics estimates influences man-

agement decisions. Effective communication between

these two groups is critical for the development and

application of modeling technologies—something we

believe has been underappreciated with regard to the

proliferation of bioenergetics modeling.

Case Study of an Esocid Model

To demonstrate the application of our framework,

we offer a case history of an esocid bioenergetics

model. Our example focuses on a post hoc evaluation

of a bioenergetics model developed for esocid fishes

(Bevelhimer et al. 1985) where field and laboratory

tests of model output and subsequent work with age-0

muskellunge have improved our understanding of

esocid energetics. To calibrate the esocid model

developed by Bevelhimer et al. (1985), Wahl and

Stein (1991) adjusted parameter estimates for activity

metabolism and waste loss to account for juvenile fish

physiology and piscivory. They then evaluated the

model by comparing field estimates of growth and food

consumption with those generated by the model. They

found that field-derived estimates of food consumption

were consistently lower (39–52%) than those generated

from the bioenergetics model during two field seasons.

A number of mechanisms were proposed to explain

these discrepancies, including variable waste loss,

seasonal variation in metabolic rate, the influence of

different prey taxa on foraging activity, and a

combination of these factors (Wahl and Stein 1991).

Several years later, we evaluated the same model in the

laboratory across a broad range of water temperatures

and ration levels, where direct observations of juvenile

tiger muskellunge feeding and growth (n ¼ 40 fish)

could be compared with model output. Like Wahl and

Stein (1991) we found that observed food consumption

was 30–75% lower than that generated by the model

(Chipps et al. 2000b). Moreover, our laboratory work

revealed that accuracy of model predictions varied with

season and ration level, leading us to hypothesize that

mathematical formulations, particularly for metabolism

and waste loss, needed to be revisited as proposed by

Wahl and Stein (1991). In winter months (,108C), for

example, the model overestimated food consumption

by 113–328% compared with only 4–58% during

summer months (.208C; Chipps et al. 2000b).

Because parameters for fish metabolism had been

calibrated across the range of water temperatures we
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examined (Bevelhimer et al. 1985), we were interested

why the model performed so poorly at low water

temperatures. Does seasonal variation in metabolism,

which has been documented for other fishes (Evans

1984), account for the seasonal variability in model

accuracy? To test this hypothesis we conducted

laboratory experiments using age-0 muskellunge and

found that respiration rate varied with season indepen-

dently of water temperature (Chipps et al. 2000a).

Indeed, for a 100-g muskellunge reared at 108C,

respiration rate was 65% lower during winter than in

summer months (Chipps et al. 2000a). Incorporating

these seasonal metabolic changes in the esocid

bioenergetics model reduced the error rate (percent

difference) by about 50% and improved the reliability

of model output (S. Chipps, unpublished). Although

feeding history (e.g., ration level) was not examined,

we suspect that it also influences metabolism, waste

losses, or both; if so, incorporating these effects into

parameter formulations would further improve the

reliability of model output.

The results from such detailed evaluations taught us

several lessons: (1) the value of combined field and

laboratory testing as a means to evaluate model

reliability, (2) the variation of model accuracy with

biotic and abiotic factors, and (3) the importance of

treating model parameters as hypotheses (that is, do

parameter formulations capture all the important

physiological drivers?). This iterative process of

conjecture and testing illustrates the importance of

model evaluation in the development and application of

bioenergetics models. Taken together, these efforts also

help reduce uncertainty in modeling applications by

highlighting constraints to model reliability that model

users can incorporate in the decision-making process.

Conclusions

Our review indicated that tests of bioenergetics

models continue to be met with mixed success. Indeed,

more often than not we found poor fits between model

predictions and field or laboratory data. To improve

model performance, we encourage model developers to

include evaluation and hypothesis-based parameter

testing as important components of the development

process. As we have learned, these efforts reveal how

well models perform across variable conditions and

shed light on factors affecting bioenergetic predictions

that have implications beyond assessing model accu-

racy. Aside from work with salmonids (Elliot 1976;

Brett and Groves 1979), little attention has been paid to

the dynamics of energy budget components (waste

losses, metabolism, feeding, and growth). Yet, factors

such as ration size, metabolic adaptations, and

foraging-related activity have an important influence

on accuracy of model predictions. Quantifying these

effects helps reduce the uncertainty in bioenergetics

models in addition to enhancing our knowledge of fish

physiology and feeding ecology.

Finally, as with other models, it is important to

recognize that there is uncertainty in bioenergetics

estimates. Although bioenergetics modeling provides a

powerful tool for fisheries assessment, it does not free

model users from recognizing the influence of model

uncertainty on management decisions (Ney 1993). In

this context we encourage model users to consider the

importance of model evaluation and the relative

uncertainty associated with model estimates as outlined

in our framework. In our view, the application of

bioenergetics models will be better served by relying

more on the evaluation process and less on the

traditional ‘‘black box’’ approach to model use.

Acknowledgments

We thank R. Hayward, P. Bajer, and K. Hartman for

insightful discussions about factors affecting accuracy

of bioenergetics models. J. Ney, R. Stein, A. Gascho-

Landis, and C. Aman provided critical comments that

improved the manuscript. We are grateful to L. Einfalt

for help with the literature review and C. Jacobsen for

helping format the manuscript. The South Dakota

Cooperative Fish and Wildlife Research Unit is jointly

supported by the U.S. Geological Survey, South

Dakota State University, South Dakota Department of

Game, Fish and Parks, and the Wildlife Management

Institute.

References

Arrhenius, F. 1998. Variable length of daily feeding period in

bioenergetics modeling: a test with 0-group Baltic

herring. Journal of Fish Biology 52:855–860.

Bajer, P. G., G. W. Whitledge, R. S. Hayward, and R. D.

Zweifel. 2003. Laboratory evaluation of two bioenerget-

ics models applied to yellow perch: identification of a

major source of systematic error. Journal of Fish Biology

62:436–454.

Bajer, P. G., R. S. Hayward, G. W. Whitledge, and R. D.

Zwiefel. 2004a. Simultaneous evaluation and improve-

ment of a bioenergetics model for white crappie

(Poxomis annularis). Canadian Journal of Fisheries and

Aquatic Sciences 61:2168–2182.

Bajer, P. G., G. W. Whitledge, and R. S. Hayward. 2004b.

Widespread consumption-dependent systematic error in

fish bioenergetics models and its implications. Canadian

Journal of Fisheries and Aquatic Sciences 61:2158–2167.

Bartell, S. M., J. E. Breck, R. H. Gardner, and A. L. Brenkart.

1986. Individual parameter perturbation and error

analysis of fish bioenergetics models. Canadian Journal

of Fisheries and Aquatic Sciences 43:160–168.

Beauchamp, D. A., D. J. Stewart, and G. L. Thomas. 1989.

Corroboration of a bioenergetics model for sockeye

310 CHIPPS AND WAHL



salmon. Transactions of the American Fisheries Society

118:597–607.

Berkson, J. M., L. L. Kline, and D. J. Orth. 2002. Evolving

methodologies: from creation to application. Pages 1–8

in J. M. Berkson, L. L. Kline, and D. J. Orth, editors.

Incorporating uncertainty into fishery models. American

Fisheries Society, Symposium 27, Bethesda, Maryland.

Bevelhimer, M. S., R. A. Stein, and R. F. Carline. 1985.

Assessing significance of physiological differences

among three esocids with a bioenergetics model.

Canadian Journal of Fisheries and Aquatic Sciences

42:57–69.

Boisclair, D., and W. C. Leggett. 1989. The importance of

activity in bioenergetics models applied to actively

foraging fishes. Canadian Journal of Fisheries and

Aquatic Sciences 46:1859–1867.

Boisclair, D., and P. Sirois. 1993. Testing assumptions of fish

bioenergetics models by direct estimation of growth,

consumption, and activity rates. Transactions of the

American Fisheries Society 122:784–796.

Brett, J. R., and T. D. Groves. 1979. Physiological energetics.

Pages 279–352 in W. S. Hoar, D. J. Randall, and J. R.

Brett, editors. Fish physiology, volume 8. Academic

Press, New York.

Burke, B. J., and J. A. Rice. 2002. A linked foraging and

bioenergetics model for southern flounder. Transactions

of the American Fisheries Society 131:120–131.

Cech, J. J., M. J. Massingill, B. Vondracek, and A. L. Linden.

1985. Respiratory metabolism of mosquitofish, Gambu-
sia affinis: effects of temperature, dissolved oxygen, and

sex difference. Environmental Biology of Fishes 13:297–

307.

Chipps, S. R., D. F. Clapp, and D. H. Wahl. 2000a. Variation

in routine metabolism of juvenile muskellunge: evidence

for seasonal metabolic compensation in fishes. Journal of

Fish Biology 56:311–318.

Chipps, S. R., L. M. Einfalt, and D. H. Wahl. 2000b. Growth

and food consumption by tiger muskellunge: effects of

temperature and ration level on bioenergetic model

predictions. Transactions of the American Fisheries

Society 129:186–193.

Chipps, S. R., and D. H. Wahl. 2004. Development and

evaluation of a western mosquitofish bioenergetics

model. Transactions of the American Fisheries Society

133:1150–1162.

Ciannelli, L., R. D. Brodeur, and T. W. Buckley. 1998.

Development and application of a bioenergetics model

for juvenile walleye pollock. Journal of Fish Biology

52:879–898.

Clapp, D. F., and D. H. Wahl. 1996. Comparison of food

consumption, growth, and metabolism among muskel-

lunge: an investigation of population differentiation.

Transactions of the American Fisheries Society 125:402–

410.

Diana, J. S. 1983. An energy budget for northern pike (Esox
lucius). Canadian Journal of Zoology 61:1968–1975.

Einfalt, L. M., and D. H. Wahl. 1997. Prey selection by

juvenile walleye as influenced by prey morphology and

behavior. Canadian Journal of Fisheries and Aquatic

Sciences 54:2618–2626.

Elliot, J. M. 1976. Energy losses in the waste products of

brown trout (Salmo trutta). Journal of Animal Ecology

45:561–580.

Evans, D. O. 1984. Temperature independence of the annual

cycle of standard metabolism in the pumpkinseed.

Transactions of the American Fisheries Society

113:494–512.

Fox, M. G. 1991. Food consumption and bioenergetics of

young-of-the-year walleye (Stizostedion vitreum): model

predictions and population density effects. Canadian

Journal of Fisheries and Aquatic Sciences 48:434–441.

Galarowicz, T. L., and D. H. Wahl. 2003. Differences in

growth, consumption, and metabolism among walleye

from different latitudes. Transactions of the American

Fisheries Society 132:425–437.

Haefner, J. W. 2005. Modeling biological systems: principles

and applications. Springer, New York.

Hansen, M. J., D. Boisclair, S. B. Brandt, S. W. Hewett, J. F.

Kitchell, M. C. Lucas, and J. J. Ney. 1993. Applications

of bioenergetics models to fish ecology and management:

where do we go from here? Transactions of the American

Fisheries Society 122:1019–1030.

Hanson, P. C., T. B. Johnson, D. E. Schindler, and J. F.

Kitchell. 1997. Fish Bioenergetics 3.0. University of

Wisconsin Sea Grant Institute, Technical Report WIS-

CU-T-97-001, Madison.

Hartman, K. J. 2000. Variability in daily ration estimates of

age-0 striped bass in the Chesapeake Bay. Transactions

of the American Fisheries Society 129:1181–1186.

Hartman, K. J., and S. B. Brandt. 1993. Systematic sources of

bias in a bioenergetics model: examples for age-0 striped

bass. Transactions of the American Fisheries Society

122:912–926.

Hartman, K. J., and S. B. Brandt. 1995. Comparative

energetics and the development of bioenergetics models

for sympatric estuarine piscivores. Canadian Journal of

Fisheries and Aquatic Sciences 52:1647–1666.

Hartman, K. J., and R. S. Hayward. 2007. Bioenergetics.

Pages 515–560 in C. S. Guy and M. L. Brown, editors.

Analysis and interpretation of freshwater fisheries data.

American Fisheries Society, Bethesda, Maryland.

Harvey, C. J., P. C. Hanson, T. E. Essington, P. B. Brown, and

J. F. Kitchell. 2002. Using bioenergetics models to

predict stable isotope ratios in fishes. Canadian Journal of

Fisheries and Aquatic Sciences 59:115–124.

Hayes, J. W., J. D. Stark, and K. A. Shearer. 2000.

Development and test of a whole-lifetime foraging and

bioenergetics growth model for drift-feeding brown trout.

Transactions of the American Fisheries Society 129:315–

332.

Hilborn, R., and M. Mangel. 1997. The ecological detective:

confronting models with data. Princeton University

Press, Princeton, New Jersey.

Huuskonen, H., J. Karjalainen, N. Medgyesy, and W. Wieser.

1998. Energy allocation in larval and juvenile Coregonus
lavaretus: validation of a bioenergetics model. Journal of

Fish Biology 52:962–972.

Kitchell, J. F., D. J. Stewart, and D. Weininger. 1977.

Application of a bioenergetics model to yellow perch

(Perca flavescens) and walleye (Stizostedion vitreum
vitreum). Journal of the Fisheries Research Board of

Canada 34:1922–1935.

Mace, P. M., and M. P. Sissenwine. 2002. Coping with

BIOENERGETICS MODELING IN THE 21ST CENTURY 311



uncertainty: evolution of the relationship between science

and management. Pages 9–28 in J. M. Berkson, L. L.

Kline, and D. J. Orth, editors. Incorporating uncertainty

into fishery models. American Fisheries Society, Sym-

posium 27, Bethesda, Maryland.

Madenjian, C. P., and D. V. O’Connor. 1999. Laboratory

evaluation of a lake trout bioenergetics model. Transac-

tions of the American Fisheries Society 128:802–814.

Madenjian, C. P., D. V. O’Connor, S. M. Chernyak, R. R.

Rediske, and J. P. O’Keefe. 2004. Evaluation of a

Chinook salmon (Oncorhynchus tshawytscha) bioener-

getics model. Canadian Journal of Fisheries and Aquatic

Sciences 61:627–635.

Madenjian, C. P., D. V. O’Connor, and D. A. Nortrup. 2000.

A new approach toward evaluation of fish bioenergetics

models. Canadian Journal of Fisheries and Aquatic

Sciences 57:1025–1032.

Madenjian, C. P., D. V. O’Connor, S. A. Pothoven, P. J.

Schneeberger, R. R. Rediske, J. P. O’Keefe, R. A.

Bergstedt, R. L. Argyle, and S. B. Brandt. 2006. Evaluation

of a lake whitefish bioenergetics model. Transactions of the

American Fisheries Society 135:61–75.

Madon, S. P., and D. A. Culver. 1993. Bioenergetics model

for larval and juvenile walleyes: an in situ approach with

experimental ponds. Transactions of the American

Fisheries Society 122:797–813.

Minton, J. W., and R. B. McLean. 1982. Measurements of

growth and consumption of sauger (Stizostedion cana-
dense): implication for fish energetic studies. Canadian

Journal of Fisheries and Aquatic Sciences 39:1396–1403.

Munch, S. B., and D. O. Conover. 2002. Accounting for local

physiological adaptation in bioenergetic models: testing

hypotheses for growth rate evolution by virtual transplant

experiments. Canadian Journal of Fisheries and Aquatic

Sciences 59:393–403.

Ney, J. J. 1993. Bioenergetics modeling today: growing pains

on the cutting edge. Transactions of the American

Fisheries Society 122:736–748.

Niklitschek, J. 2001. Bioenergetics modeling and assessment

of suitable habitat for juvenile Atlantic and shortnose

sturgeons in the Chesapeake Bay. Doctoral dissertation.

University of Maryland, College Park.

Paakkonen, J. P. J., O. Tikkanen, and J. Karjalainen. 2003.

Development and validation of a bioenergetics model for

juvenile and adult burbot. Journal of Fish Biology

63:956–969.

Petersen, J. H., and J. F. Kitchell. 2001. Climate regimes and

water temperature changes in the Columbia River:

bioenergetic implications for predators of juvenile

salmon. Canadian Journal of Fisheries and Aquatic

Sciences 58:1831–1841.

Petersen, J. H., and D. L. Ward. 1999. Development and

corroboration of a bioenergetics model for northern

pikeminnow feeding on juvenile salmonids in the

Columbia River. Transactions of the American Fisheries

Society 128:784–801.

Rand, P. S., and D. J. Stewart. 1998. Dynamics of salmonine

diets and foraging in Lake Ontario, 1983–1993: a test of

a bioenergetic model prediction. Canadian Journal of

Fisheries and Aquatic Sciences 55:307–317.

Rennie, M. D., N. C. Collins, B. J. Shuter, J. W. Rajotte, and

P. Couture. 2005. A comparison of methods for

estimating activity costs of wild fish populations: more

active fish observed to grow slower. Canadian Journal of

Fisheries and Aquatic Sciences 62:767–780.

Rice, J. A., and P. A. Cochran. 1984. Independent evaluation

of a bioenergetics model for largemouth bass. Ecology

65:732–739.

Schaeffer, J. S., R. C. Haas, J. S. Diana, and J. E. Breck. 1999.

Field test of two energetic models for yellow perch.

Transactions of the American Fisheries Society 128:414–

435.

Selch, T. M., and S. R. Chipps. 2007. The cost of capturing

prey: measuring largemouth bass (Micropterus Salmo-
nides) foraging activity using glycolytic enzymes (lactate

dehydrogenase). Canadian Journal of Fisheries and

Aquatic Sciences 64:1761–1769.

Sherwood, G. D., I. Pazzia, A. Moeser, A. Hontela, and J. B.

Rasmussen. 2002. Shifting gears: enzymatic evidence for

the energetic advantage of switching diet in wild-living

fish. Canadian Journal of Fisheries and Aquatic Sciences

59:229–241.

Skalski, G. T., M. E. Picha, J. F. Gilliam, and R. J. Borski.

2005. Variable intake, compensatory growth, and

increased growth efficiency in a teleost fish: models

and mechanisms. Ecology 86:1452–1462.

Slaughter, J. E., IV, R. A. Wright, and D. R. DeVries. 2004.

The effects of age-0 body size on the predictive ability of

a largemouth bass bioenergetics model. Transactions of

the American Fisheries Society 133:279–291.

Stewart, D. J., and M. Ibarra. 1991. Predation and production

by salmonine fishes in Lake Michigan. Canadian Journal

of Fisheries and Aquatic Sciences 48:909–922.

Stockwell, J. D., and B. M. Johnson. 1997. Refinement and

calibration of a bioenergetics-based foraging model for

kokanee (Oncorhynchus nerka). Canadian Journal of

Fisheries and Aquatic Sciences 54:2659–2676.

Stockwell, J. D., and B. M. Johnson. 1999. Field evaluation of

a bioenergetics-based foraging model for kokanee

(Oncorhynchus nerka). Canadian Journal of Fisheries

and Aquatic Sciences 56:140–151.

Sweka, J. A., and K. J. Hartman. 2001. Effects of turbidity on

prey consumption and growth in brook trout and

implications for bioenergetics modeling. Canadian Jour-

nal of Fisheries and Aquatic Sciences 58:386–393.

Trudel, M., D. R. Geist, and D. W. Welch. 2004. Modeling the

oxygen consumption rates in Pacific salmon and steelhead:

an assessment of current models and practices. Transactions

of the American Fisheries Society 133:326–348.

Trudel, M., and J. B. Rasmussen. 2001. Predicting mercury

concentration in fish using mass balance models.

Ecological Applications 11:517–529.

Trudel, M., A. Tremblay, R. Schetagne, and J. B. Rasmussen.

2001. Why are dwarf fish so small? An energetic analysis

of polymorphism in lake whitefish (Coregonus clupea-
formis). Canadian Journal of Fisheries and Aquatic

Sciences 58:394–405.

Wahl, D. H., and R. A. Stein. 1988. Selective predation by

three esocids: the role of prey behavior and morphology.

Transactions of the American Fisheries Society 117:142–

151.

Wahl, D. H., and R. A. Stein. 1991. Food consumption and

growth of three esocids: field test of a bioenergetic

312 CHIPPS AND WAHL



model. Transactions of the American Fisheries Society

120:230–246.

Whitledge, G. W., P. G. Bajer, and R. S. Hayward. 2006.

Improvement of bioenergetics model predictions for fish

undergoing compensatory growth. Transactions of the

American Fisheries Society 135:49–54.

Whitledge, G. W., and R. S. Hayward. 1997. Laboratory

evaluation of a bioenergetics model for largemouth bass

at two temperatures and feeding levels. Transactions of

the American Fisheries Society 126:1030–1035.

Whitledge, G. W., R. S. Hayward, D. B. Noltie, and N. Wang.

1998. Testing bioenergetics models under feeding

regimes that elicit compensatory growth. Transactions

of the American Fisheries Society 127:740–746.

Whitledge, G. W., R. S. Hayward, R. D. Zweifel, and C. F.

Rabeni. 2003. Development and laboratory evaluation of

a bioenergetics model for subadult and adult smallmouth

bass. Transactions of the American Fisheries Society

132:316–325.

Winberg, G. G. 1956. Rate of metabolism and food

requirements of fishes. Fisheries Research Board of

Canada Translation Series 194.

Worischka, S., and T. Mehner. 1998. Comparison of field-

based and indirect estimates of daily food consumption in

larval perch and zander. Journal of Fish Biology

53:1050–1059.

Wright, R. A., J. E. Garvey, A. H. Fullerton, and R. A. Stein.

1999. Predicting how winter affects energetics of age-0

largemouth bass: how do current models fare? Transac-

tions of the American Fisheries Society 128:603–612.

BIOENERGETICS MODELING IN THE 21ST CENTURY 313


