In situ estimation of gastric evacuation and consumption rates of burbot (Lota lota) in a summer-warm lowland river

By F. Nagel¹, F. Hölker² and C. Wolter²

¹Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Rostock, Germany; ²Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

Summary
The burbot (Lota lota) is the only cold-stenothermal gadoid inhabiting freshwaters with high temperature amplitudes. Summer temperatures up to 25°C have been reported as being far above the thermal preferendum of this species. Thus this study aimed to determine gastric evacuation, daily food consumption and energy uptake of burbot at high temperatures under in situ conditions. These data are prerequisites for bioenergetics modelling of the adaptive physiological behaviour of burbot in summer-warm freshwaters. The study was conducted in the lower Oder River, Germany between May and October 2003 covering a temperature range between 4.6 and 23.4°C. A total of 1683 burbot was caught in five successive 24-h fisheries. The mean index of stomach fullness showed a significant decrease with rising temperature. Highest stomach fullness values were reached at 4.6°C in October. A negative correlation was observed between gastric evacuation and temperature. In contrast to the data reported in the literature gastric evacuation was found to be high at 4.6°C, which may indicate an ongoing compensatory adaptation to the long period of high temperatures in July and August, when a significant reduction of the mean daily ration was observed. Balancing the energy flux probably resulted in a decrease in the hepatosomatic index at high temperatures and an increase during the cool period, when the liver energy was restored. The endogenous energy pool of the liver may determine the survival of burbot during summer months. The ability of burbot to actively forage during winter and to rapidly digest high amounts of food at cold temperatures was considered an adaptation to increase survival chances in an environment with high environmental, especially thermal, heterogeneity as is typical for a summer-warm lowland river. Limitations of the energy budget have to be expected with extended periods of high temperatures.

Introduction
The burbot (Lota lota) is the only member of the cold-stenothermal family Gadidae that has invaded freshwater habitats and is widely distributed throughout the Holarctic region. Spawning occurs during winter at low temperatures (1–4°C) over coarse substrata; eggs optimally develop between 4°C and 7°C and larvae hatch after 30 (at 6°C)–41 (2°C) days. After an initial pelagic stage, juveniles shelter in weed beds and under rocks in the littoral. Adults typically inhabit deep lakes and cool rivers, where it is suggested they avoid temperatures above 13°C (temperature requirements reviewed by McPhail and Paragamian, 2000). Temperatures above 20°C have been considered stressful high as indicated by reduced oxygen consumption and feeding (Shodjai, 1980; Pääkkönen and Marjomäki, 1997). Accordingly, feeding was modelled to cease at 23°C (Rudstam et al., 1995). In contrast, Pääkkönen and Marjomäki (2000) observed feeding at 23.4°C in an experimental setup. Thermal limits for burbot survival have been determined in several ways: In an experimental tank, 89% of 0+ fish died within 9 weeks at 28°C (Shodjai, 1980). During growth experiments mortality began at 23°C when the first burbot died after 6 days, increased successively with increasing water temperature, and reached 60% at the highest temperature 25.5°C (Hofmann and Fischer, 2003). Pääkkönen et al. (2003) experimentally determined lethal levels for burbot acclimated from 2 to 20°C. The lethal temperature (27°C) was the lethal rate for burbot acclimated to 12°C. Critical thermal maxima, i.e. temperatures tolerated no longer than 10 min, have been experimentally determined using burbot acclimated to 5.2–5.9°C and 19.6°C with 27.1–26.8°C and 31.5–31.7°C, respectively (Hofmann and Fischer, 2002). Nevertheless, stressfully high temperatures were found to be maintained by burbot in a state of metabolic depression, with down regulated enzyme expression, low food intake and low energy expenditure (Hardewig et al., 2004). Interestingly, in temperate, large lowland rivers of Central and Eastern Europe, burbot was one of the most abundant fish species prior to excessive damming. In the free-flowing lower Oder River (Germany) this species still constitutes about 20% of the littoral fish assemblage (Wolter and Freyhof, 2004). In their lower stretches, these rivers typically reach temperatures above 20°C for months and maximum temperatures of up to 25–26°C in summer. Burbot not only survive these stressfully high temperatures, but also grow rapidly in summer (Hölker et al., 2004). A potentially insufficient energy uptake was suggested to be compensated by the metabolism of energy-rich liver tissue to provide energy for growth (Hölker et al., 2004) and the down regulated basal metabolism (Hardewig et al., 2004). Replenishment of the liver energy store was suggested to occur at lower temperatures, when increased feeding provides surplus energy. Hofmann and Fischer (2003) calculated the maximum daily food consumption at 17.9°C and the maximum daily growth at 16°C; Shodjai (1980) found this to be 12–20°C and 16°C, respectively. For adult burbot Pääkkönen and Marjomäki (2000) determined 13.6°C as an optimum temperature for mean daily food intake, and Hofmann and Fischer (2002) calculated a final temperature preferendum of 14.2°C. Corresponding to the optimum temperature for growth determined by Shodjai (1980), Hölker et al. (2004) assumed that gastric evacuation reached its maximum at 15–16°C.
In contrast to initial expectations, Lake Constance burbot have been observed to migrate into cooler profundal waters despite optimum temperatures for feeding and growth in the littoral, questioning the role of temperature as proximate factor for habitat shifts (Hofmann and Fischer, 2003). However, when temperature refuges are lacking, which will be the case in most lowland rivers, burbot maintain growth at the expense of liver energy (Hölker et al., 2004) probably in a state of metabolic stress (Hardewig et al., 2004).

The study aimed to determine gastric evacuation and daily food consumption of burbot at high temperatures under in situ conditions, where burbot were not fed ad libitum in contrast to the experimental setups (Shodjai, 1980; Pääkkönen and Marjomäki, 2000; Hofmann and Fischer, 2002, 2003). These data are prerequisites for bioenergetics modelling of the adaptive physiological behaviour of burbot in summer-warm freshwaters.

Materials and methods

Field sampling

The study was performed in the lower River Oder, within the National Park ‘Lower Oder Valley’, Germany. In the study area, the Oder River is a 200–250 m wide and 4–5 m deep lowland floodplain river with a medium discharge of 522 m3 s$^{-1}$ and a mean flow velocity of 1 m s$^{-1}$. Further site details are given in Wolter and Freyhof (2004).

The Water and Navigation Authority in Eberswalde, Germany, provided daily means of water temperature, which were recorded continuously at the automatic water level gauge ‘Schwedt Oderbrücke’, situated at the upstream end of the sampling site. Water temperatures typically exceed 20°C for at least 1 month during the summer, while winter temperatures drop to ~0.2°C, with an absolute range between <0°C and 28.8°C.

Five successive 24 h fisheries were carried out between May and October 2003. At each sampling date, every 2 h 30 burbot were caught using a generator-powered DC electrofishing gear, in total 12 samples and 360 specimens each.

All burbot were anaesthetized immediately after capture using Tricaine Methane Sulfonate (MS-222), measured (total length to the nearest mm below), weighed (nearest g), and their stomach content collected before the next sampling. At each sampling, 10 specimens were dissected to weigh stomach content, the empty body the and liver. All other specimens were rereleased into the River Oder after recovering from anaesthesia. The proportion of liver to the whole body mass was calculated as hepatosomatic index (HSI): HSI (%) = liver weight / mass of carcass*100. As there was a significant increase of HSI with carcass mass in May and a significant decrease in August (P < 0.05) HSI was standardised to a 100 g fish based on the HSI-carcass mass relationship in May and August, respectively.

Stomach contents of all other specimen were flushed out using a water pump sprayer. This non-destructive technique (reviewed in detail by Hyslop, 1980) was evaluated as most effective method of recovering stomach items from a variety of fishes (Kamler and Pope, 2001; Schulze et al., 2006). In a pre-test, 25 flushed out burbot stomachs were found to be empty when thereafter dissected. All stomach contents were preserved in 4% formaldehyde.

Water temperatures, number of burbot caught, length and body mass ranges on the five sampling dates are presented in Table 1. Stomach fullness was expressed as fullness index (FI):

$$FI(\%) = \frac{\text{total stomach content mass}}{\text{total fish mass}} \times 100.$$

FI-values were calculated using stomach content wet mass determined to the nearest 0.01 g. Changes of the stomach content relative to fish mass have been frequently used to assess diel feeding rhythms (Hölker and Temming, 1996). To exclude allometric size dependent influences on FI, the size adjusted FI$_{adj}$ of a 100 g standard fish was calculated based on the FI-total mass relationships of all investigated burbot.

Gastric evacuation

Determining gastric evacuation in the field is hampered by the individual variability of the specimen in fasting, sporadic food uptake and meal size, the latter inversely correlated to evacuation constant (Pääkkönen et al., 1999). In contrast to experiments, in the natural environment there was neither a defined extended period in which the entire population was fasting, nor a defined amount of food provided. However, nearly all fish species show clear diurnal behavioural patterns (Hellman, 1993), including burbot (Wolter and Freyhof, 2004). Accordingly, the average FI$_{adj}$ of the subsamples (30 burbot) varied during the 24 h surveys. The steepest decline of average FI$_{adj}$ observed among a minimum of four consecutive subsamples was used to estimate the evacuation constant for each sampling date separately.

Estimates of the evacuation constant were based on analysis of percentiles (medians and upper quartiles) according to Temming et al. (2002), which has proven to be an appropriate method to avoid bias arising from inclusion of empty stomachs in the means in combination with uncontrolled variation in the initial meal sizes. According to Pääkkönen and Marjomäki (1997), an exponential model provides the best description of the relationship between stomach content and time and therefore was used to calculate gastric evacuation constant between sub-samples:

$$FI_{adj}(t) = FI_{adj0}e^{-Rt},$$

where FI_{adj} is the stomach content at time t (h), FI_{adj0} is the initial stomach content and R is the gastric evacuation constant (1 h$^{-1}$). Only if the relationship between FI$_{adj}$ and time during the period of steepest decline was significant ($P < 0.05$), the resulting R was used for further analysis.

Estimation of daily ration

Daily food consumption rate (C) was calculated according to Eggers (1977) as

$$C(\%) = 24RFI_{adj24},$$

with FI_{adj24} = adjusted median stomach content over the 24 h period of all specimens caught in one sampling campaign, and R = instantaneous gastric evacuation constant. Diurnal feeding intensities at day and night have been compared using the simplified Eggers (1977) model,

$$C_{h}(\% h^{-1}) = RFI_{adj},$$

to calculate the relative consumption rate per hour.

Statistical analysis

Median values have been first calculated at the level of subsamples, for example to estimate the average variations of FI$_{adj}$ during 24 h. Each sampling date formed a group of nested sub-samples. These groups were analysed for seasonal
variations in FI adj, R and C as well as for the effects of temperature. Median FI24 adj and C were compared using the proc multtest approach of the SAS software package (Release 8.2, SAS Institute Inc.) to perform multiple comparisons of nonparametric data. FI adj-percentiles of all specimens caught during 24 h were used to analyse the impact of temperature on FI adj and C using regression analysis. Medians of HSI related to temperature and season were compared by Kruskal–Wallis one-way analysis of variance with multiple comparisons of all groups. Diurnal variations of feeding rations were compared using the Mann–Whitney U-test. If not otherwise indicated, all tests were performed at the 0.05 level of significance using SPSS for Windows (SPSS Inc. 2005, release 14.0.1).

Results
Gastric evacuation and temperature
Gastric evacuation constants correlated slightly with temperature T (Fig. 1, $R = 0.0042$, $r^2 = 0.48$, $P < 0.05$). Decreasing R-values with increasing temperature were observed between October and August, with the lowest R-value registered at the maximum temperatures >20°C in July and August (Fig. 1).

Stomach fullness
The median index of fullness FI24 adj increased from May to June, and declined significantly in July and August (SAS, proc multtest, $P < 0.001$) when it approached zero (Fig. 2a). In October the stomach fullness significantly increased, indicating an inverse correlation between water temperature and FI24 adj (SAS, proc multtest, $r^2 = 0.94$, $P < 0.01$, Fig. 2b). Reduced feeding intensity at high water temperatures was further indicated by an increasing proportion of fish with empty stomachs (Table 1). The proportion of burbot with empty stomachs was low in May and June, increased in July and August, while in October at low temperatures only a single specimen was found with an empty stomach.

Table 1: Food consumption of burbot. Sampling dates, temperatures, number of specimens (n = 1683), ranges of length and biomass, indices of fullness and daily rations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>17.2</td>
<td>18.7</td>
<td>23.4</td>
<td>21.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Number (n) of burbot</td>
<td>248</td>
<td>360</td>
<td>360</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>n with empty stomachs</td>
<td>22</td>
<td>49</td>
<td>161</td>
<td>159</td>
<td>1</td>
</tr>
<tr>
<td>TL (cm)</td>
<td>11–32</td>
<td>14–32</td>
<td>16–37</td>
<td>13–32</td>
<td>11–31</td>
</tr>
<tr>
<td>F (g)</td>
<td>18–277</td>
<td>26–258</td>
<td>34–373</td>
<td>21–188</td>
<td>12–194</td>
</tr>
<tr>
<td>FI24 (%)</td>
<td>0.68 (0.26–1.22)</td>
<td>0.81 (0.23–1.64)</td>
<td>0.13 (0–0.28)</td>
<td>0.02 (0–0.21)</td>
<td>4.0 (2.53–5.35)</td>
</tr>
<tr>
<td>FI24 adj (%)</td>
<td>0.58 (0.23–0.99)</td>
<td>0.78 (0.21–1.44)</td>
<td>0.01 (0–0.27)</td>
<td>0.01 (0–0.14)</td>
<td>4.0 (1.14–2.59)</td>
</tr>
<tr>
<td>C (%)</td>
<td>0.52 (0.21–0.89)</td>
<td>2.07 (0.56–3.81)</td>
<td>0.01 (0–0.23)</td>
<td>0.01 (0–0.12)</td>
<td>5.13 (3.22–7.33)</td>
</tr>
</tbody>
</table>

T, water temperature, measured at the day of sampling; TL, total length; M, mass; FI24, median index of fullness (% of body mass); FI24 adj, adjusted median index of fullness (% of body mass); C, median relative daily ration (% of body mass); lower/upper quartiles in parentheses, proc multtest feature by SAS to perform multiple comparisons of nonparametric data, letters mark significant differences.

Fig. 1. Effect of water temperature on gastric evacuation of burbot. Data points = evacuation constants based on median and upper quartile percentiles of stomach fullness values (sampled at five temperatures, n = 248–360 each). All values standardised for a 100 g fish. Fitted linear model ($R = -0.0042$, $r^2 = 0.48$, $P < 0.05$) covers temperature range 4.6–23.4°C

Fig. 2. Seasonal stomach fullness (FI adj, % body mass) of 1683 burbot in relation to a) months (medians with upper and lower quartiles) and b) water temperature. Single black dots = median FI adj at each temp. Fitted model (FI adj = -0.0973x + 2.3006, $r^2 = 0.94$, $P < 0.01$) covers temperature range 4.6–23.4°C. All values standardised for a 100 g fish
Daily ration

Mean daily rations of burbot varied seasonally between 0.01 and 5.13% of body mass (Table 1). Daily rations significantly rose until June (SAS, proc multtest, $P < 0.01$), and significantly decreased in July and August (SAS, proc multtest, $P < 0.01$) when temperatures increased above 20°C (Fig. 3). The minimum of daily rations was observed in August at 21.4°C. In October at lower temperatures a substantial increase of daily rations was observed (SAS, proc multtest, $P < 0.001$, Fig. 3).

The consumption rate per hour indicates the nocturnal behaviour of burbot. However, in October there was only a slight trend and in July the feeding intensity did not differ significantly between day and night (Mann–Whitney U-test, $P > 0.05$, Fig. 4).

Hepatosomatic index

Medians of HSI slightly increased from May (8.96) to June (9.17) and significantly decreased from June to October (3.7; Kruskal–Wallis test, $P < 0.001$, Fig. 5).

Discussion

Gastric evacuation and temperature

Temperature is probably the most widely studied variable influencing digestion and gastric evacuation and most studies have found an exponential relationship between temperature and gastric evacuation (Bromley, 1994). However, Tyler (1970) and Temming (1995) proposed a domed temperature relationship for cod, with peak evacuation occurring at around 15°C. According to a temperature preferendum determined for burbot at a similar temperature range (e.g. Shodjai, 1980; Pääkkönen and Marjomäki, 2000; Hofmann and Fischer, 2002) and an exponential relationship between R and T for burbot at experimental temperatures between 1.3°C and 12.6°C (Pääkkönen and Marjomäki, 2000), a dome shaped function was expected to describe the gastric evacuation of burbot where the evacuation constant reached its maximum at 15–16°C (Hölker et al., 2004). In contrast, in the present study a linear model fitted best to the data. The complete data set ($n = 1683$) revealed a continuous decrease of mean gastric evacuation with rising temperatures, while a domed temperature relationship for burbot was not supported, possibly because of the limited number of data points in the intermediate temperature range between 5°C and 18°C. However, our data appeared adequate, since the data points are within the domed temperature relationship for burbot (Hölker et al., 2004) and a similar relationship for cod (Tyler, 1970; Temming, 1995; Fig. 6).

At low temperatures (5°C) the R values of 0.12 estimated from field samples were approximately eight times higher compared to the results of Pääkkönen and Marjomäki (1997), who reported extremely low gastric evacuation constants.
between 1.3°C ($R = 0.009$) and 12.6°C ($R = 0.034$, Fig. 6). This difference may result partly from the different prey items found (at least 90% invertebrates in all sub-samples of stomach content, data not shown) compared to lean fish prey used by Pääkkönen and Marjomäki (1997) in their experiments. However, changes in prey composition alone may not explain gastric evacuation constants that were eight times higher. The burbot used by Pääkkönen and Marjomäki (1997) originated from a Finnish lake, where at least the benthic adult burbot are exposed to a homogeneous water body with low temperatures most of the year. Thus, the differences compared to the burbot population of a summer-warm lowland river may indicate an evolutionary adaptation to very low temperatures most of the year. The increasing daily rations observed at 5°C, which is close to the ration determined in the lower Oder in June (2.07% d$^{-1}$ at 18.7°C). In contrast, this study revealed the highest value in October at 4.6°C. However it cannot be excluded that the maximum in daily ration will be reached at a temperature between 4.6 and 17.2°C, because this range was not covered by field samplings. The quantification of the day/night ration (h$^{-1}$) reflected a nocturnal behaviour of burbot. Therefore, the duration of the night strongly influenced the absolute amount of food consumed. Although nocturnal behaviour was classified as stenotypial for burbot with little modulation by external stimuli (Fischer, 2004), this study revealed very little difference in the feeding activity between day and night in July and August, in particular at the highest temperature in July.

Burbot strongly reduce feeding activity during summer months (Pulliainen and Korhonen, 1990; Pääkkönen and Marjomäki, 1997). Given the length increment of juvenile burbot observed in the lower Oder River in summer (Hölker et al., 2004), an endogenous source was considered to supply the energy required. Within the fish family Gadidae, in general the liver provides an important energy reservoir and a main storage for fat and glycogen (Love, 1980). Balancing the energy flux probably resulted in the decrease of the hepatosomatic index at high temperatures (see also Fig. 5) and its increase during the cool period, when the liver energy was restored. In contrast to most freshwater fish, which reduce growth during the winter months, the evolutionary burden of being cold-adapted inherited from its marine ancestors enables $L.\ lota$ to maintain somatic growth throughout the year (Hölker et al., 2004).

The present study fills gaps in the estimation of in situ gastric evacuation rates and food consumption at high

Table 2
Comparison of gastric evacuation constants (R). Burbot data from this study as well as burbot and cod values from the literature

<table>
<thead>
<tr>
<th>Author</th>
<th>Species</th>
<th>T (°C)</th>
<th>R (h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>$L.\ lota$</td>
<td>4.6</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.2</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.7</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.4</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.4</td>
<td>0.035</td>
</tr>
<tr>
<td>Pääkkönen and Marjomäki (1997)</td>
<td>$L.\ lota$</td>
<td>1.3</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.6</td>
<td>0.034</td>
</tr>
<tr>
<td>Durbin et al. (1983)</td>
<td>$G.\ morhua$</td>
<td>5.8</td>
<td>0.077</td>
</tr>
<tr>
<td>Jones (1974)</td>
<td>$G.\ morhua$</td>
<td>9.3</td>
<td>0.114</td>
</tr>
<tr>
<td>Tyler (1970)</td>
<td>$G.\ morhua$</td>
<td>6.0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.0</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0</td>
<td>0.184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.0</td>
<td>0.139</td>
</tr>
</tbody>
</table>
temperatures to enhance bioenergetics modelling approaches for burbot. The reduced food consumption as well as the low gastric evacuation constants at high temperatures confirmed the hypothesis that the liver has to serve as an essential gastric evacuation constants at high temperatures to enhance bioenergetics modelling approaches for burbot consumption at high temperatures 1241

Burbot consumption at high temperatures

Acknowledgements

We thank K. Mammitsch, C. Schomaker and M. Faller for support during fieldwork. We thank M. Zettler (Baltic Sea Research Institute Rostock-Warnemünde) for help in determining the feeding organisms. For numerous inductions during the field and laboratory work we especially thank A. Griesau, M. Voigt and C. Westendorf. Furthermore we thank R. Kinzelbach and H. M. Winkler (University of Rostock) for comments on the manuscript. Last, but not least, grateful thanks to H.-H. Uhlmann and P. Uhlmann for financial support.

References

Amundsen, P. A.; Kleimetsen, A., 1988: Diet, gastric evacuation rates and growth during the summer months (cf. Hölkner et al., the hypothesis that the liver has to serve as an essential energy source at high temperatures confirmed that the liver has to serve as an essential energy pool to provide energy for maintenance and growth during the summer months (cf. Hölkner et al., 2004).

