Transactions of the American Fisheries Society

Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

Journal:	Transactions of the American Fisheries Society
Manuscript ID:	TAFS-2014-0088
Manuscript Type:	Notes
Keywords:	Thermal Effects, Maximum Consumption, Juvenile Salmon Bioenergetics

1	Re-estimating temperature-dependent consumption parameters in bioenergetics models for
2	juvenile Chinook salmon
3	
4	JOHN M. PLUMB*
5	Idaho Cooperative Fish and Wildlife Research Unit
6	University of Idaho
7	Moscow, Idaho 83844, USA
8	
9	CHRISTINE M. MOFFITT
10	U.S. Geological Survey
11	Idaho Cooperative Fish and Wildlife Research Unit
12	University of Idaho
13	Moscow, Idaho 83844, USA
14	
15	
16	
17	*Present address: U.S. Geological Survey, Western Fisheries Research Center, 5501A Cook-
18	Underwood Rd. Cook, Washington 98605, USA
19	"This draft manuscript is distributed solely for purposes of scientific peer
20	review"
21	

22 ABSTRACT

39

23 Researchers have cautioned against the borrowing of consumption and growth parameters from 24 other species and life stages in bioenergetics growth model projections. In particular, 25 temperature dependent consumption in the Wisconsin bioenergetics model for Chinook salmon 26 *Oncorhynchus tshawytsha* produced estimates of maximum consumption (C_{max}) at lower 27 temperatures than measured in published laboratory feeding trails. In this paper we used 28 published and unpublished data from laboratory feeding trials for three stocks of subyearling 29 Chinook salmon: the Snake/Columbia River, the Nechako/Fraser River, and the Big Qualicum River to estimate and adjust parameters for temperature dependence in C_{max} used in the 30 31 Wisconsin bioenergetics model. Our data included growth measures from fish ranging from 1.5 to 7.2 g, and at temperatures that ranged from 14 to 26°C. We estimated parameters for 32 33 temperature dependence in C_{max} based on relative differences in food consumption and then used 34 bootstrapping techniques to estimate the error about the parameters. We found that the current 35 parameter values miss-estimated the observed data at temperatures between 17 and 25 °C, 36 confirming that the C_{max} should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude the adjusted parameters for C_{max} should produce 37 38 more accurate predictions from the bioenergetics model for subyearling Chinook salmon.

40 **INTRODUCTION**

41 Bioenergetics models have become increasingly important tools in fisheries biology to examine 42 the effects of climate change (Mruscia et al. 2009; Pőrtner and Peck 2010; Gale et al. 2011; 43 Hasler et al. 2012), predict the consequences of habitat alterations and restorations (Boughton et 44 al. 2007; Wehrly et al. 2007; Beer and Anderson 2011), better understand nutritional physiology 45 and toxicology, evaluate aquaculture systems (Jobling 1994; Dumas et al. 2009), and compare 46 consumptive behaviors in the wild (Armstrong and Schindler 2011). These models have been 47 parameterized using empirical data from individuals or groups of fish across a wide range of 48 species, locations, and life stages (Kitchell et al. 1977; Beauchamp et al. 1989; Stewart and 49 Ibarra 1991; Rand et al. 1993; Railsback and Rose 1999; Tyler and Bolduc 2008). In 50 constructing bioenergetics models, parameters for the population of interest are often borrowed 51 from other species, locations, or life stages due to lack of data about the target population. 52 However, such borrowing of parameters may introduce bias into growth or consumption 53 predictions from bioenergetics models (Ney 1993; Chipps and Wahl 2008; Tyler and Bolduc 54 2008; Dumas et al. 2009; Van Poorten and Walters 2010). Researchers have also cautioned that parameters derived from older or larger fish may not accurately fit juvenile stages (Hanson et al. 55 1997; Tyler and Bolduck 2008). Juvenile fish often have different temperature-dependent 56 57 consumption and growth relationships compared to adults of the same species (Post 1990; King 58 et al. 1999; Schoenbeck et al. 2008; Ohlberger et al. 2012), and thus borrowing parameter values 59 from other species or life stages may lead to systematic departures in bioenergetics estimates 60 (Bajer et al. 2004; Trudel et al. 2005). 61 In bioenergetics models, the purpose of the function for temperature dependence in

62 maximum consumption (C_{max} ; Thornton and Lessem 1978; Hanson et al. 1997) is to scale the

63	food consumed by the fish according to the temperature of the fish. The function provides a
64	curve that describes the relative change in consumption from the temperature providing
65	maximum consumption for the given species or life stage. Consumption parameters have not
66	been measured for subyearling Fall Chinook Salmon; therefore, Stewart and Ibarra (1991), who
67	first published the bioenergetics model for Chinook Salmon, borrowed consumption parameters
68	from coho salmon, O. kisutch. Furthermore, the authors based their temperature-dependent
69	curve for C_{max} on six data points. The maximum consumption curve for coho salmon peaked at
70	about 17°C. Brett et al. (1982) found that both coastal and inland stocks of subyearling Chinook
71	salmon exhibited their highest consumption at $20-21^{\circ}C - 3-4^{\circ}C$ higher than used in the Stewart
72	and Ibarra (1991) bioenergetics model for Chinook salmon. Geist et al. (2010) reported optimal
73	growth at about 20°C, and also suggested that the peak of the consumption curve for Chinook
74	salmon might be higher than currently used in bioenergetics model for Chinook salmon. These
75	findings suggest that C_{max} peaks at higher temperatures than currently implemented in the
76	bioenergetics model for Chinook salmon.
77	Given these observations, we were motivated to re-evaluate the temperature dependent
78	consumption parameters for subyearling Chinook salmon. Our focus was to: 1) compile data on
79	temperature-dependent consumption for subyearling Chinook salmon, and 2) estimate the
80	parameters (and error) for subyearling Chinook salmon under the Wisconsin bioenergetics model
81	(Thornton and Lessem 1978; Hanson et al. 1997), and 3) compare these results to the
82	relationship currently implemented for the species.
83	
84 85	METHODS

86 We compiled data laboratory studies conducted in our own laboratory, and from published

sources that included information about food consumption by subyearling Chinook salmon at		
different water temperatures (Brett et al. 1982; Yanke 2006).		
Fish Stocks, Laboratory Procedures, and Data Sources		
Snake River stock — We conducted laboratory experiments on Snake River subyearling		
Chinook salmon obtained as fertilized eggs from Lyons Ferry hatchery (Washington Department		
of Fish and Wildlife, Starbuck, Washington). Experiments were conducted in the fisheries		
laboratory of the College of Natural Resources over two consecutive years (Yanke 2006).		
Subyearling fish tested in 2003 (mean initial weight = 7.1 g; $N = 180$ fish/tank) were placed into		
triplicate tanks for one of three thermal treatments over an 80-d period. The treatments consisted		
of a 30-d period of acclimation from an initial temperature of 12°C to final target temperatures		
within 1°C of 16°C, 20°C, or 24°C (Table 1 and Figure 1). Subyearlings tested over 42 d in		
2004 (mean initial weight = 4.2 g) and were acclimated over a 21 d period from 14°C to target		
temperatures within 1°C of 16°C, 20°C, and 24°C ($N = 240$ fish per tank; triplicate tanks for		
each treatment). The average rates of increase in temperature during the acclimation periods		
over the 2003 and 2004 experiments was < 0.4 $^{\circ}$ C/d, and were < 0.23 $^{\circ}$ C/d over the full duration.		
All fish were fed commercial pellets (Bio Diet Grower, Bio-Oregon, Warrenton, Oregon)		
ad libitum twice daily. The daily food consumed by each tank of fish, was estimated by		
subtracting the amount of food remaining on the bottom of each tank from the amount of food		
introduced to each tank on each daily feeding event over the course of our experiments. Because		
fish were sampled and removed from the tanks for physiological assay on a weekly basis, the		
changing numbers of fish (and grams of fish) in the tanks had to be accounted for in our estimate		
of the total food consumed. So, we used (1) the daily feeding amount (after accounting for the		

111 uneaten portion), (2) the weekly starting and ending fish weights (from the sampled fish taken

112	for physiological assay), and (3) the daily numbers of fish in the tanks to interpolate over each
113	week the daily amount of food consumed (g) for each tank per gram of fish (i.e., g/g).
114	British Columbia Stocks) — Data from Brett et al. (1982) provided details on food
115	consumption, growth, and conversion efficiency for groups of (~25-30 fish) subyearling Chinook
116	salmon held in tanks and reared in temperatures from 14 to 24°C for 28 d. The salmon tested
117	(initial mean weight = 2.9 g) were from coastal and upriver stocks in British Columbia, Canada.
118	The coastal stock was obtained from the Big Qualicum River hatchery as eggs. Fish from the
119	Nechako River stock (tributary to the Fraser River) were captured as sac fry, transported to their
120	lab and held in tanks. Both stocks were comparable in size at the beginning of trials, and all fish
121	were fed Oregon Moist pellets ad libitum three times daily. In their study, the total food
122	consumption was measured by weighing the food provided to the tanks of fish and subtracting
123	the estimated uneaten portions after each feeding.
124	
125	Estimating Temperature-Dependent Consumption
126	We used the consumption function in the Wisconsin model: $C = C_{\max} \cdot p(C_{\max}) \cdot f(T)$, where C is
127	the specific consumption rate in grams of food consumed per gram of fish per day, C_{max} is the
128	maximum specific consumption rate at the optimal temperature for consumption, $p(C_{\text{max}})$ is the
129	proportion of C_{max} that was consumed, and $f(T)$ is a function of temperature (T) that scales C
130	relative to consumption at the temperature where consumption is at the maximum, C_{max} . The
131	form of $f(T)$ used in the Chinook bioenergetics model is given by Thornton and Lessem (1978):
132	$f(T) = K_A \cdot K_B$ where K_A and K_B are values resulting from two logistic equations (one increasing
133	and one decreasing).

134

Following the notation of Hanson et al. (1997) K_A and K_B can be expressed as:

135
$$K_A = (CK1 \cdot L1)/(1 + CK1 \cdot (L1 - 1))$$

- $L1 = e^{(G1 \cdot (T CQ))}$
- 137 $GI = (1/(CTO-CQ)) \cdot \ln((0.98 \cdot (1-CKI))/(CKI \cdot 0.02))$
- 138 $K_B = (CK4 \cdot L2)/(1 + CK4 \cdot (L2 1))$
- $L2 = e^{(G2 \cdot (CTL-T))}$
- 140 $G2 = (1/(CTL-CTM)) \cdot \ln((0.98 \cdot (1-CK4))/(CK4 \cdot 0.02))$
- 141

142 In these relationships T is the water temperature. For the increasing portion of the curve; CO is 143 the lower water temperature at which temperature dependence is a small fraction (CK1) of the 144 maximum consumption rate; and CTO is the water temperature that is 0.98 of the maximum 145 consumption rate. Similarly, for the decreasing portion of the curve, CTM is defined as the water 146 temperature at which dependence is still 0.98 of the maximum, and *CTL* is the temperature at 147 which dependence is some reduced fraction (CK4) of the maximum consumption rate. Please 148 see Thornton and Lessem (1978) for greater detail on the general construct of this model for 149 biological rates.

150 We used the food consumption data provided by Brett et al. (1982) and collected during 151 our laboratory studies to estimate the six consumption-dependent parameters used by Thornton 152 and Lessem (1978) (Tables 1 and 2). Consumption data for the *j*th tank or treatment group of tanks within an experiment were transformed to a scale ranging from 0 to 1 as $\dot{C} = C_{\text{tot}ii}$ / 153 $\max(C_{\text{totij}})$ where C_{totij} is the total amount food eaten during the *i*th study by the *j*th tank or 154 treatment group over a growth period (Legendre and Legendre 1998). Thus when $\acute{C} = 1$ then 155 $C_{\text{totij}} = \max(C_{\text{totij}})$. Consumption data collected by Brett et al. (1982) were collected under fairly 156 157 constant temperatures. To maintain comparability among studies and fulfill the assumption of a

fixed *x*-axis, we used only the consumption data when temperatures were constant and within 1⁵⁹ 1°C of the experimental target temperature (day 34 to 80 in 2003 and day 21 to 42 in 2004). These \acute{C} values and the associated mean tank temperatures were used to estimate the Thornton and Lessem (1978) parameters. To provide a measure of uncertainty about the parameter values we bootstrapped the residuals about the fitted line, and used the percentile method to obtain the 95% confidence limits (CL) about the parameter values (Efron and Tibsharini 1993).

164

165 **RESULTS**

The amount of food consumed varied among tanks and studies, largely due to differences in the 166 167 length of the growth periods, fish sizes, and the numbers of fish (Table 1). For example, the total 168 amount of food eaten (g) over the 28-d Brett et al. (1982) study ranged from 32.1g to 116 g for 169 the Qualicum River fish, and 58.1g to 94.9 g for Nechako River fish. The amount of food 170 consumed by Snake River stocks ranged from 511 g to 994 g over our 21-d feeding trails, and 171 1175.0 g to 4007g over our 46-d feeding trails. The temperature at which the maximum amount 172 of food was eaten occurred at mean daily temperatures of about 20.9 °C for Qualicum River fish 173 and 21.0 °C for Nechako River fish in the Brett et al. (1982) studies. During our studies, 174 consumption (g/g/d) was maximized at mean temperatures of 16°C to 20 °C, though we only 175 measured consumption at three temperatures. 176 Parameter estimates from fitting f(T) to the consumption data supported a shift in 177 consumption towards higher temperatures than currently specified in the bioenergetics model for 178 Chinook salmon (Table 2 and Figure 1). The unadjusted model specified C_{max} at 16.7 °C, whereas the adjusted parameter values estimated C_{max} at 20.9 °C (lower 95% CL =18.2, Upper 179 180 95% CL 21.8 =), a 4.2 -°C difference between models. This difference between the unadjusted

181 and adjusted model was consistent over the temperature range, although we had little data on 182 which to inform f(T) at low temperatures, and so there was large uncertainty about the parameter 183 values at low end of the temperature range. Nonetheless, the estimated curve for temperature 184 dependence in maximum consumption more closely followed the observed data than did f(T)from the unadjusted model. For example, the unadjusted model resulted in an $r^2 = 0.24$ and 185 residuals that were heterogeneous over the predicted range, whereas the adjusted model had an r^2 186 187 = 0.77 and homogeneous residuals over the predicted range. These findings clearly support a 188 better fit to the data for the adjusted model and a shift towards C_{max} at higher temperatures for 189 subyearlings than currently implemented under the Wisconsin bioenergetics model for Chinook 190 salmon.

191

192 **DISCUSSION**

Our re-evaluation of the Thornton and Lessem (1978) parameters should improve consumption 193 194 and growth estimates when using the Wisconsin based bioenergetics model in application to 195 juvenile Chinook salmon. The unadjusted parameters developed for Chinook salmon by Stewart and Ibarra (1991) used lower optimal temperatures in the thermal multiplier equation for C_{max} 196 197 from Thornton and Lessem (1978). We found that adjustments in the thermal multiplier 198 parameters better accounted for the effect of temperature on C_{max} across the range of rearing 199 temperatures for which we had data. However, we acknowledge that all fish in these 200 experiments were fed high energy, easily digestible diets, which potentially influenced our 201 results. Nonetheless, if our findings about juvenile feeding behavior at specific temperatures in 202 the laboratory are at all comparable to performance in the natural environment, use of our adjusted model parameters should produce better estimates of consumption and growth for 203

204 juvenile fall Chinook salmon (Koehler et al. 2006; Armstrong and Schindler 2011).

205 With the paucity of carefully collected data, and the difficulty in evaluating and obtaining 206 these key bioenergetics model parameters (Chips and Wahl 2008), we believe model predictions 207 can be improved for subyearling Chinook salmon with adjustments. The unadjusted model 208 parameters of the Wisconsin model were developed without consumption data from Chinook 209 salmon, likely influencing the variable performance of this model (Mandenjian et al. 2004; Chips 210 and Wahl 2008). The unadjusted model parameter values for the temperature-dependence in 211 C_{max} were calibrated by Beauchamp et al. (1989) for sockeye salmon, O. nerka. Stewart and 212 Ibarra (1991) later compared the Beauchamp et al. (1989) calibration using food consumption by 213 coho salmon, O. kisutch (Edsall et al. 1974, 1999; Stewart 1980; Stewart et al. 1983), but not 214 Chinook salmon. So using existing data to re-parameterize the Thornton and Lessem (1978) 215 model for C_{max} , provided a relatively inexpensive opportunity to evaluate and improve a sub-216 model to the Wisconsin bioenergetics model over a wide range of conditions know to be 217 important to fish consumption, and in turn growth estimates. 218 The early life stage and smaller fish sizes likely contributed to our results. Madenjian et 219 al. (2004) found good agreement between observed and predicted values for the unadjusted 220 bioenergetics model for Chinook salmon, suggesting an appropriate function for C_{max} . However, 221 the authors conducted their laboratory evaluation using much larger Chinook salmon (> 400 g) 222 that were fed natural (i.e. alewife, *Alosa pseudoharengus*) rather than pelleted feed, and fish were

reared at a cooler and narrower temperature range (10.7–13 °C) than evaluated by this study.

Sauter et al. (2001) experimentally showed that the thermal preference of subyearling fall

225 Chinook salmon (from the lower Columbia River) decreased from about 18 to 11°C with the

progression of smoltification, indicating that optimal temperatures for consumption (and growth)

227	may also presumably decline as the fish mature and prepare for ocean entry. Banks et al. (1971)
228	demonstrated a shift in the thermal-growth curve in Lower Columbia River subyearling fall
229	Chinook salmon towards cooler temperatures with greater fish maturity and size, which also
230	supports C_{max} at lower temperatures with greater fish maturity and size. It seems reasonable that
231	optimal temperatures for consumption and growth for fall Chinook salmon would have evolved
232	to decline and become more similar to other salmon stocks (e.g., stream-type Chinook salmon)
233	and species (e.g. coho and sockeye salmon) as the fish mature and near ocean-entry.
234	Temperatures experienced by adult fish in the ocean would be more homogeneous and similarly
235	shared among species compared to those experienced by juvenile fish in freshwater habitats (e.g.,
236	inland headwater streams and lakes versus lower main stem rivers and estuaries). Our estimates
237	are very similar to those currently used in Wisconsin bioenergetics model for steelhead, O.
238	<i>mykiss</i> , which tend towards longer stream residences $(1 - 7 \text{ y}; \text{Pevan et al. 1994})$ than Chinook
239	salmon (< 2 y). Killen et al. (2010) reviewed resting metabolic rates for 89 teleost species, and
240	found that intraspecific scaling of metabolic rate varied with spatial habitat, as well as
241	temperature. The unadjusted Wisconsin model parameters for C_{max} may be more appropriate for
242	adult Chinook salmon, whereas our adjusted model may be more universally applied to juvenile
243	Chinook salmon irrespective of whether the fish originated from inland versus coastal rivers
244	(e.g., lower Snake versus Big Qualicum rivers), or northern versus southern portions of their
245	range (e.g., Nechako versus Sacramento-San Joaquin rivers; Brett et al. 1982; Kjelson et al.
246	1982; Myrick and Cech 2004).
247	The validity of parameter adjustments could be improved by further a priori laboratory
248	tests designed to calibrate and corroborate the model parameters, especially those for CQ – the

249 parameter for consumption at the lower end of thermal range (< 10 °C). Given the *post-hoc*

250	nature of our analysis, we believe our simple approach and adjustment to the parameter values
251	was prudent and was sufficient to test the hypothesis that subyearling fall Chinook salmon may
252	exhibit higher consumption at higher temperatures than previously believed. Trends in
253	consumption and growth follow one another over the range in temperature, but peaks
254	temperatures for consumption are typically about $1 - 1.5$ °C higher than peak temperature for
255	growth (Brett et al. 1982; Foreseth et al. 2001). Perry et al. (2014 in review) measured peak
256	growth at 19 °C across 11 populations of subyearling Chinook salmon, two of which were used
257	in this study, and so we measure peak temperatures for C_{max} (20.4 °C) that were within
258	expectations of other studies that have evaluated both consumption and growth by other
259	salmonids over a range in temperatures (Foreseth et al. 2001).
260	Our analysis identifies and potentially provides correction for a systematic consumption-
261	dependent error in the bioenergetics model for juvenile Chinook salmon. Bajer et al. (2004)
262	found widespread systematic consumption-dependent errors in bioenergetics models, and Trudel
263	et al. (2005) indicated that improvements could be made to the energy density-mass equations in
264	the Wisconsin bioenergetics model for juvenile Chinook salmon. Improvements to bioenergetics
265	model output is unlikely to be apparent between the current and adjusted parameters over much
266	of the central portion of the temperature range (where the two functions overlap; Figure 1), but
267	model improvements should be most apparent at the upper end of the thermal range, which may
268	be important for those using bioenergetics models to assess the effects of climate change on fish
269	consumption and growth. At a minimum, our study suggests that the bioenergetics model should
270	be revisited before predicting growth and consumption by juvenile Chinook salmon at the upper
271	end of the thermal range where changes in consumption and growth are most rapid.
272	

273 ACKNOWLEDGEMENTS

274	Detailed laboratory data used in these evaluations were part of the master's thesis of J.
275	Yanke; the modeling analyses were part of the doctoral dissertation of J. Plumb at the University
276	of Idaho. Funding for this project was provided by Bonneville Power Administration, D.
277	Docherty project officer. We thank the following at the University of Idaho for assistance in
278	laboratory trials: K. Anlauf, M. Colvin, T. Johnson, M. Santora, K. Stout, D. Stumbo, C. Smith,
279	H. Vander Zanden, J. Evavold, B. Sun, and C. Hoffman. We thank to D.A. Beauchamp for his
280	review of an earlier draft of this manuscript. Gratitude is extended to W.P. Connor, K.F. Tiffan,
281	R.W. Perry and D.W. Rondorf for their suggested improvements. The data from U of Idaho
282	were collected under the auspices of University of Idaho protocol # 2003-09. Any use of trade,
283	firm, or product names is for descriptive purposes only and does not imply endorsement by the
284	U.S. Government.
285	
286 287	References
288	Armstrong, J.B., and D.E. Schindler. 2011. Excess digestive capacity in predators reflects a life
289	of feast and famine. Nature 476:84-88.
290	Bajer, P.G., G.W. Whitledge, and R.S. Hayward. 2004. Widespread consumption-dependent
291	systematic error in fish bioenergetics models and its implications. Canadian Journal of
292	Fisheries and Aquatic Sciences 61:2158-2167.
293	Banks, J.L., L.G. Fowler, and J.W. Elliot. 1971. Effect of rearing temperature on growth, body
204	
294	form, and hematology of fall Chinook fingerlings. Progressive Fish Culturist 33:20-26.

- 295 Beauchamp, D.A., D.J. Stewart, and G.L. Thomas. 1989. Corroboration of a bioenergetics model
- for sockeye salmon. Transactions of the American Fisheries Society 118:597-607.

- Beer, W. N., and J. J. Anderson. 2011. Sensitivity of juvenile salmonid growth to future climate
 trends. River Research and Applications 27: 663–669.
- Boughton, D. A., M. Gibson, R. Yedor, and E. Kelley. 2007. Stream temperature and the
- potential growth and survival of juvenile *Oncorhynchus mykiss* in a southern California
 creek Freshwater Biology 52: 1353–1364.
- Brett, J. R., W. C. Clarke, and J. E. Shelburn. 1982. Experiments on thermal requirements for
 growth and food conversion efficiency of juvenile Chinook salmon *Oncorhynchus*
- 304 *tshawytscha*. Canadian Technical Report of Fisheries and Aquatic Sciences No 1127.
- 305 Chipps, S.R., and D.H. Wahl. 2008. Bioenergetics modeling in the 21st century: reviewing new
- insights and revisiting old constraints. Transactions of the American Fisheries Society137:298-313.
- 308 Dumas, A., J. France and D. Bureau. 2009. Modelling growth and body composition in fish
- 309 nutrition: where have we been and where are we going. Aquaculture Research 41:161-
- 310 181.
- 311 Edsall, T.A., E.H. Brown, Jr., T.G. Yocum, and R.S.C. Wolcott, Jr. 1974. Utilization of alewives
- 312 by coho salmon in Lake Michigan. U.S. Fish and Wildlife Service, Great Lakes Fishery
- 313 Laboratory, Administrative Report, Ann Arbor, Michigan.
- Edsall, T.A., A.M. Frank, D.V. Rottiers, and J.V. Adams. 1999. The effect of temperature and
- ration size on the growth, body composition, and energy content of juvenile coho salmon.
 Journal of Great Lakes Research 25:355-362.
- Efron, B. and R.J. Tibshirani. 1993. An introduction to the bootstrap, Chapman and Hall, Inc.,
 London.
- 319 Forseth, T., M.A. Hurley, A.j. Jensen, and J.M. Elliot. 2001. Functional models for growth and
- 320 food consumption of Atlantic salmon parr, *Salmo salar*, from a Norwegian river.

321	Freshwater Biology 46:173-186.
322	Gale, M. K., S. G. Hinch, E. J. Eliasonc, S. J. Cooke, and D. A. Patterson. 2011. Physiological
323	impairment of adult sockeye salmon in fresh water after simulated capture-and-release
324	across a range of temperatures. Fisheries Research 112:85-95.
325	Geist, D.R., Z. Deng, R.P. Mueller, S.R. Brink, and J.A. Chandler. 2010. Survival and Growth
326	of juvenile Snake River fall Chinook salmon exposed to constant and fluctuating
327	temperatures. Transactions of the American Fisheries Society 139:92-107.
328	Hanson, P.C., T.B. Johnson, D.E. Schindler, and J.F. Kitchell. 1997. Fish bioenergetics 3.0.
329	University of Wisconsin, Sea Grant Institute, WISCU-T-97-001, Madison.
330	Hasler, C. T., S. J. Cooke, S. G. Hinch, E. Guimond, M. R. Donaldson, B. Mossop, and D. A.
331	Patterson. 2012. Thermal biology and bioenergetics of different upriver migration
332	strategies in a stock of summer-run Chinook salmon. Journal of Thermal Biology 37:265-
333	272.
334	Jobling, M. 1994. Fish bioenergetics. Chapman and Hall, New York.
335	Killen, S. S., D. Atkinson, and D. S. Glazier. 2010. The intraspecific scaling of metabolic rate
336	with body mass in fishes depends on lifestyle and temperature. Ecology Letters 13: 184-
337	193.
338	King, J.R., B.J. Shuter, and A.P. Zimmerman. 1999. Empirical links between thermal habitat,
339	fish growth, and climate change. Transactions of the American Fisheries Society 128:
340	656-665.
341	Kitchell, J. F., D. J. Stewart, and D. Weininger. 1977. Applications of a bioenergetics model to
342	yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of
343	the Fisheries Research Board of Canada 34:1922–1935.

344	Kjelson, M.A., P.F. Raquel, and F.W. Fisher. 1982. Life history of fall-run Chinook salmon,
345	Oncorhynchus tshawytscha, in the Sacramento-San Joaquin estuary, California. Pages
346	393-411 in V.S. Kennedy, editor. Estuarine comparisons. Academic Press, New York.
347	Koehler, M.E., K.L. Fresh, D.A. Beauchamp, J.R. Cordell, C.A. Simenstad, and D.E. Seiler.
348	2006. Diet and bioenergetics of lake-rearing juvenile Chinook salmon in Lake
349	Washington. Transactions of the American Fisheries Society 135:1580-1591.
350	Legendre, P. & L. Legendre. 1998. Numerical ecology. 2nd English edition. Elsevier Science
351	BV, Amsterdam.
352	Madenjian, C.P., D.V. O'Connor, S.M. Chernyak, R.R. Rediske, and J.P. O'Keefe. 2004.
353	Evaluation of a Chinook salmon (Oncorhynchus tshawytscha) bioenergetics model.
354	Canadian Journal of Fisheries and Aquatic Sciences 61:627-635.
355	Mruscia, A-B, H. W. van der Veer, and S. A.L.M. Kooijma. 2009. The AquaDEB project (phase
356	I): analysing the physiological flexibility of aquatic species and connecting physiological
357	diversity to ecological and evolutionary processes by using Dynamic Energy Budgets.
358	Journal of Sea Research 62:43–48.
359	Myrick, C. A., and J. J. Cech. 2004. Temperature effects on juvenile anadromous salmonids in
360	California's Central Valley: what don't we know? Reviews in Fish Biology and Fisheries
361	14:113-123.
362	Ney, J.J. 1993. Bioenergetics modeling today: growing pains on the cutting edge. Transactions
363	of the American Fisheries Society 122:736-748.
364	Ohlberger, J., T. Mehner, G. Staaks, and F. Hölker. 2012. Intraspecific temperature dependence
365	of the scaling of metabolic rate with body mass in fishes and its ecological implications.
366	Oikos 121:245-251.

367	Perry, R.W., J.M. Plumb, and C. Huntington. 2014. Estimating Mass- and Temperature-
368	Dependent Growth Parameters across Populations of Juvenile Chinook Salmon
369	Oncorhynchus tshawytscha. Transactions of the American Fisheries Society (in review).
370	Pevan, C. M., R. R. Whitney, and K. R. Williams. 1994. Age and length of steelhead smolts from
371	the Mid-Columbia River Basin, Washington. North American Journal of Fisheries
372	Management 14:77–86.
373	Pörtner, H. O., and M. A. Peck. 2010. Climate change effects on fishes and fisheries: towards a
374	cause-and-effect understanding. Journal of Fish Biology 77:1745–1779.
375	Post, J.R. 1990. Metabolic allometry of larval and juvenile yellow perch (Perca flavescens): in
376	situ estimates of bioenergetics models. Canadian Journal of Fisheries and Aquatic
377	Sciences 47:554-560.
378	Railsback, S. F., and K. A. Rose. 1999. Bioenergetics modeling of stream trout growth:
379	temperature and food consumption effects. Transactions of the American Fisheries
380	Society 128:241–256.
381	Rand, P. S., D. J. Stewart, P. W. Seelbach, and L. R. Wedge. 1993. Modeling steelhead
382	population energetics in Lakes Michigan and Ontario. Transactions of the American
383	Fisheries Society 122:977–1001.
384	Sauter, S.T., L.I. Crawshaw, and A.G. Maule. 2001. Behavioral thermoregulation by juvenile
385	spring and fall Chinook salmon, Oncorhynchus tshawytscha, during smoltification.
386	Environmental Biology of Fishes 61:295-304.
387	Schoenbeck, C.W., S.R. Chipps, and M.L. Brown. 2008. Improvement of an Esocid
388	bioenergetics model for juvenile fish. Transactions of the American Fisheries Society
389	137:1891-1897.

390	Stewart, D.J. 1980. Salmonid predators and their forage base in Lake Michigan: a bioenergetics-
391	modeling synthesis. Doctoral Dissertation. University of Wisconsin, Madison.
392	Stewart, D.J., D. Weininger, D.V. Rottiers, and T.A. Edsall. 1983. An energetics model for
393	lake trout, Salvelinus namaycush: application to the Lake Michigan population. Canadian
394	Journal of Fisheries and Aquatic Sciences 40: 681-698.
395	Stewart, D.J., and M. Ibarra. 1991. Predation and production of salmonine fishes in Lake
396	Michigan, 1978-88. Canadian Journal of Fisheries and Aquatic Sciences 48:909–922.
397	Thornton, K.W., and A.S. Lessem. 1978. A temperature algorithm for modifying biological
398	rates. Transactions of the American Fisheries Society 107:284-287.
399	Trudel, M., S. Tucker , J. F. T. Morris , D. A. Higgs and D. W. Welch. 2005. Indicators of
400	energetic status in juvenile coho salmon and Chinook salmon. North American Journal of
401	Fisheries Management 25:374-390.
402	Tyler, J. A. and M. B. Bolduc. 2008. Individual variation in bioenergetics rates of young-of-year
403	rainbow trout. Transactions of the American Fisheries Society 137:314-323.
404	Van Poorten, B. T., and C. J. Walters. 2010. Estimation of bioenergetics parameters for rainbow
405	trout (Oncorhynchus mykiss) using capture-recapture data with comparison to estimates
406	from a laboratory-based model. The Open Fish Science Journal 3:69-79.
407	Wehrly, K. E., L. Wang, and M. Mitro. 2007. Field-based estimates of thermal tolerance limits
408	for trout: incorporating exposure time and temperature fluctuation. Transactions of the
409	American Fisheries Society 136:365–374.
410	Yanke, J.A. 2006. Effects of passive integrated transponder (PIT) tags and elevated water
411	temperatures on survival, growth, and physiology of Snake River fall Chinook salmon
412	subyearlings (Oncorhynchus tshawytscha). Master's Thesis. University of Idaho,

URL: http://mc.manuscriptcentral.com/tafs Email: journals@fisheries.org

413	Moscow,	Idaho.

415 Figure Captions

416

- 417 Figure 1. Adjusted (upper panel) and unadjusted (lower panel) temperature dependent
- 418 consumption curves using the Thornton and Lessem (1978) equation and coefficients provided in
- 419 Table 1. Individual plots of the proportion of maximum food consumption by mean water
- 420 temperatures are provided for data from laboratory trials of Brett et al (1982) for Qualicum River
- 421 and Nechako River stocks, and Snake River stocks reared in our laboratory. Dashed lines in the
- 422 upper panel represent the bootstrapped 95% confidence bounds about the adjusted consumption

423 curve.

424

472 Table 1. — Mean tank temperatures, initial weights, and the total food consumed by subyearling

473 Chinook salmon by river origin, length of feeding trial at constant temperature, and data source.

474 Ranged food values were calculated from dry weights during the Brett et al. (1982) studies and

475 calculated from wet weights during U of Idaho studies.

Mean	Mean initial	Total	Total	Ranged		
temperature °C	weight (g)	consumption (g)	consumption (g/g)	consumption		
Qualicum River 28 d (Brett et al. 1982)						
24.8	3.2	32.1	0.336	0.292		
23.9	3.2	70	0.727	0.630		
24.0	3.4	69.4	0.674	0.584		
23.0	3.2	85.3	0.900	0.780		
22.0	3.3	101.4	1.012	0.877		
21.8	3.3	100.8	1.006	0.872		
20.9	3.4	116	1.154	1.000		
19.9	3.2	108.3	1.114	0.965		
19.9	3.1	107.5	1.141	0.989		
19.0	3.3	100.5	1.015	0.880		
18.1	3.3	111.5	1.130	0.979		
16.0	3.3	88.5	0.902	0.782		
13.9	3.4	90.5	0.900	0.780		
	Nechako River 28 d (Brett et al. 1982)					
23.9	2.1	58.1	0.927	0.682		
23.7	2.5	65.2	0.876	0.645		
23.0	2.5	83.2	1.114	0.820		
21.9	2.6	90.2	1.174	0.865		
21.8	2.5	91.7	1.233	0.908		
21.0	2.3	93.7	1.358	1.000		
20.0	2.5	94.9	1.286	0.947		
19.9	2.6	85.1	1.074	0.791		
19.0	2.3	90.6	1.325	0.975		
15.9	2.3	90.3	1.303	0.960		
	Sr	nake River 21 d (U o	of Idaho)			
23.7	8.7	511.3	0.300	0.581		
19.4	8.4	993.9	0.517	1.000		
19.4	8.5	816.1	0.429	0.830		
23.7	7.6	624.6	0.370	0.715		
19.4	8.3	714.4	0.364	0.705		
15.4	7.8	747.3	0.411	0.796		
15.4	8.2	809.7	0.426	0.824		
23.7	8.7	716.8	0.387	0.750		
15.4	7.8	753.6	0.422	0.818		

476 477 478

478

Wiedli	Mean initial	Total	Total	Ranged
temperature °C	weight (g)	consumption (g)	consumption (g/g)	consumption
	S	nake River 46 d (U	of Idaho)	
23.9	14.6	1240	0.494	0.448
19.9	16.2	3790	0.951	0.863
19.9	16.1	4006.8	1.084	0.984
23.9	14.7	1177	0.560	0.508
19.9	16.7	4170	1.049	0.952
16.0	14.6	3730	1.102	1.000
16.0	16.6	3956	0.963	0.874
23.9	14.8	1175	0.462	0.420
16.0	16.7	3858	1.015	0.921

490	Table 2. —	Parameter va	alues and t	heir bootstra	apped 95% c	onfidence	imits esti	imated for	the
401	Theoreton	d Laganne (10	170)	alianta data	man in a the among a	1 damanda			

491	Thronton and Lessem (1978) multiplier to determine thermal-dependence in maximum	
492	consumption in the Wisconsin bioenergetics model for Chinook salmon.	

			Adjusted value
Symbol	Parameter description	Unadjusted value	(Lower CL, Upper CL)
CQ	Lower temperature for C_{\max}	5	4.97 (0.74, 14.12)
СТО	Optimum temperature for C_{\max}	15	20.93 (14.3, 21.8)
СТМ	Maximum temperature for C_{max}	18	20.93 (20.86, 22.48)
CTL	Upper temperature for C_{max}	24	24.05 (23.9, 25.17)
CK1	Proportion of C_{max} at CQ	0.36	0.09 (0.08, 0.09)
CK4	Proportion of C_{max} at CTL	0.01	0.53 (0.28, 0.57)

493
494
495