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Synopsis Coastal estuaries are among the most biologically productive habitats on earth, yet are at risk from human

activities including marine oil spills. The 2010 Deepwater Horizon oil spill contaminated hundreds of kilometers of

coastal habitat, particularly in Louisiana’s delta. Coastal estuaries are naturally dynamic habitats where periodic and

stochastic fluctuations, for example in temperature, salinity, nutrients, and hypoxia, are common. Such environmental

variability regularly imposes suboptimal conditions for which resident species must continually compensate by drawing

on diverse physiological abilities. However, exposures to oil, in addition to their direct toxic effects, may interfere with

functions that normally enable physiological compensation for suboptimal conditions. This review summarizes the pan-

oply of naturally-encountered stressors that may interact with oil, including salinity, hypoxia, pathogens, and competi-

tion, and the mechanisms that may underlie these interactions. Combined effects of these stressors can amplify the costs

of oil-exposures to organisms in the real world, and contribute to impacts on fitness, populations, and communities, that

may not have been predicted from direct toxicity of hydrocarbons alone. These interactions pose challenges for accurate

and realistic assessment of risks and of actual damage. To meet these challenges, environmental scientists and managers

must capitalize on the latest understanding of the complexities of chemical effects of natural stressors on organisms, and

adopt integrative and holistic measures of effect from the molecular to whole-animal levels, in order to anticipate,

characterize, diagnose, and solve, ecotoxicological problems.

Introduction

Controlled laboratory experiments are often relied

upon to characterize the sensitivity of species at

risk to environmental stress in order to make assess-

ments of damage to natural resources following en-

vironmental disasters, and for assessments of risk to

the environment in anticipation of potential damage.

Given estimates of the likelihood, intensity, and du-

ration of exposures, and the types and severity of the

biological responses that are anticipated, judgments

are formulated to summarize or predict impact or

risk. Exposures in the laboratory are also performed

to establish a link between a cause (a particular stres-

sor) and a particular effect observed in the field.

Interpretation of these laboratory-based efforts can

be complicated by the complexities of life in natural

ecosystems.

Within the context of contaminants, laboratory-

based assessments of exposure to chemicals usually

are performed under optimal environmental condi-

tions, including optimal temperature, salinity, avail-

ability of oxygen, absence of predators, and

minimized competition. However, prevailing envi-

ronmental conditions experienced by residents of

natural systems may often be suboptimal. This is

particularly true of coastal estuaries that are at risk

from marine oil spills. Coastal estuaries are naturally

dynamic and highly variable habitats, that are subject

to much periodic and stochastic fluctuation, for

example in temperature, salinity, hypoxia, and
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availability of nutrients (Wolfe 1986). Many estua-

rine ecosystems, including those in the northern Gulf

of Mexico (nGOM) impacted by the Deepwater

Horizon oil spill (DHOS), are already highly modi-

fied and impaired by human activities. Moreover,

complicated interactions are anticipated between

contaminants and environmental variability intro-

duced by climatic change (Schiedek et al. 2007).

Concentrations of chemicals that might be deemed

of insignificant risk based on results from experi-

ments on responses to controlled exposures might

underestimate risk in the real world, where synergis-

tic interactions with common co-occurring natural

stressors might significantly amplify the risk of

chemically-induced damage (Sih et al. 2004). That

is, toxicant stress may be compounded by natu-

rally-encountered stressors, such that the nature

and severity of effects may often be underestimated

in ecotoxicological assessments of risk and/or

damage (Heugens et al. 2001). That stressors interact

is not a new or novel message, but this message must

achieve greater penetrance in applied environmental

biology to achieve state-of-the-art estimation of risks,

and the phenomenon of interactions is one that

could benefit from greater mechanistic insight.

Reviewed here are the types of environmental

stressors that naturally occur in estuarine habitats,

and the evidence for the nature, mechanisms, and

consequences of their interactions with contaminat-

ing petroleum hydrocarbons from oil spills. In par-

ticular, interactions of oil with salinity, hypoxia,

pathogens, and energetics are highlighted, including

brief mention of community-level interactions that

are more thoroughly reviewed elsewhere (e.g.,

Peterson 2001). Since it is currently the largest acci-

dental marine oil spill in history, this review is set

within the context of the Deepwater Horizon

(DWH) blowout in 2010, during which approxi-

mately 200 million gallons of South Louisiana

crude oil was released into the nGOM over the

course of 87 days (Crone and Tolstoy 2010). This

spill contaminated over 650 miles of coastal habitat

centered primarily on Louisiana’s sensitive delta

(National Commission 2011), and unquantified

tracts of deep-water habitat, where effects on resident

coastal and deep-water species are starting to emerge

(Silliman et al. 2012; White et al. 2012; Whitehead

et al. 2012; Dubansky et al. 2013).

Salinity

Coastal estuaries are subject to wide periodic and

episodic variations in salinity, due to variable dis-

charges from rivers, marine inundation from storm

surge, and regular tidal and seasonal influences.

Physiological compensation for changes in salinity

are a continuous challenge for resident species,

since tight regulation of physiological ion balances

is critical for maintaining organismal performance

and fitness in many marine species. Gills are the

primary organ for ion regulation (Evans et al.

2005) and these structures are in direct contact

with the aquatic environment. As such, if hydrocar-

bon pollutants damage the epithelium of the gills

this may exacerbate impacts on the health and per-

formance of residents of osmotically dynamic habi-

tats. Indeed, there is much evidence to support this

prediction.

Some interactions between the toxicity of oil and

ambient salinities may be related to changes in routes

of exposure. For example, solubility of PAHs in-

creases with decreasing salinity, thereby increasing

bioavailability and toxic risk in low-salinity waters

(Ramachandran et al. 2006). In contrast, fish in

hyper-osmotic conditions tend to increase drinking

rate, thereby potentially increasing intestinal contact

with dissolved organic pollutants in seawater.

Killifish (Fundulus heteroclitus) in seawater accumu-

lated greater doses of naphthalene than did killifish

in brackish or fresh water, and this correlated with

elevated osmotic imbalance and elevated mortality in

seawater (Levitan and Taylor 1979). However, killi-

fish in freshwater also had elevated mortality relative

to fish in iso-osmotic conditions (Levitan and Taylor

1979), indicating that additional mechanisms, per-

haps associated with the solubility of PAHs or with

general osmotic stress, can enhance PAH-induced

mortality. During the DHOS event, a massive fresh-

water diversion on the Mississippi River (LA) was

opened in an effort to limit the penetrance of con-

taminating oil into Louisiana marshes, and this

diversion caused substantial drops in salinities in

many normally brackish habitats (Bianchi et al.

2011). Such interventions can impose acute physio-

logical stress on resident species (e.g., Eberline 2012),

which alone, or in combination with other stressors

such as contaminating oil, may have unintended

consequences.

Some fish are facultative air breathers, providing

the behavioral option of lowering the respiratory

contact of the gills with oil-contaminated water.

Indeed, the surface-breathing behavior of armored

catfish (Hoplosternum littorale) increased at low to

moderate concentrations of the water-accommodated

fraction (WAF) of crude oil (Brauner et al. 1999).

However, since fish breathing at the surface can gulp

water while breathing there, they may ingest floating

oil, and their occupancy of the air–water interface
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may lead to direct oiling of skin and gills. Oral doses

of crude oil impair osmoregulatory abilities in ar-

mored catfish (Brauner et al. 1999).

Exposure of rainbow trout (Salmo gairdneri) to

oil–water emulsion causes impairment of osmoregu-

lation under both hypo-osmotic and hyper-osmotic

conditions, although there was no effect following IP

injection (Engelhardt et al. 1981). This indicated that

the osmoregulatory disruption was from direct ef-

fects on the gills rather than from systemic effects.

This finding is consistent with widely reported im-

pacts of crude oil on the morphology of the gills.

The swelling of epithelial cells, as well as epithelial

lifting, hyperplasia, aneurisms, proliferation of muco-

cytes, and lamellar fusions are examples of structural

alterations of gills that commonly are induced by

petroleum hydrocarbons (DiMichele and Taylor

1978; Mckeown and March 1978; Engelhardt et al.

1981; Haensly et al. 1982; Solangi and Overstreet

1982; Prasad 1991; Claireaux et al. 2004; Negreiros

et al. 2011) (Fig. 1). Killifish exposed in the field to

contaminating oil from the DHOS also show these

structural lesions (Dubansky et al. 2013; Whitehead

et al. 2012). These morphological alterations are

likely causally related to changes in permeability of

the gills and loss of ionoregulatory ability that have

been observed in fish and in shrimp both in fresh-

water and seawater (e.g., Baden 1982; Kennedy and

Farrell 2005; Matsuo et al. 2005; Goanvec et al.

2011). Tropical freshwater fish (tambaqui:

Colossoma macropomum) were exposed to dispersed

crude oil in freshwater, which caused ionoregulatory

impairment through alterations in permeability of

the gills (Duarte et al. 2010). Specifically, treatments

caused diffusive loss of sodium across the gills which,

when coupled with inability to stimulate sodium

uptake, resulted in severe net loss of sodium. Treat-

ments also caused severe net loss of chloride. In ad-

dition to gross morphological impacts, hydrocarbons

may interact with osmoregulatory abilities by affect-

ing sodium-potassium ATPase activity in gills (Boese

et al. 1982; Mccloskey and Oris 1993) or by causing

loss of chloride cells from the gills’ epithelium

(Goanvec et al. 2011). Recovery of the structure

and function of gills may be protracted (Baden

1982; Goanvec et al. 2011). Indeed, gills from resi-

dent killifish showed much structural damage for

many months following peak oiling from the DWH

disaster (Whitehead et al. 2012; Dubansky et al.

2013).

Hypoxia

Hypoxia is common in estuaries because of high

organic content, high nutrient levels, high tempera-

tures, and shallow depths. Furthermore, human-

induced alterations of watersheds are causing

increasing severity and frequency of coastal hypoxia

(Rabalais and Turner 2001; Diaz and Rosenberg

Fig. 1 Conceptual model of interactions between petroleum hydrocarbon pollutants and environmental stressors that are naturally

encountered in estuaries. Natural ecological stressors (top row) are connected by black down-facing arrows to the physiological

functions that are impaired by interactions with petroleum hydrocarbons. Petroleum hydrocarbons are connected to physiological

effects by remaining black arrows. The mechanisms that underlie interactions between hydrocarbons and natural stressors are listed and

superimposed above black arrows. Gray arrows indicate the flow of downstream effects.

Oil and natural stressor interactions 637
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2008), and these effects are expected to amplify with

global climatic change. There is growing recognition

that increases in the frequency, severity, and duration

of hypoxia events in near-shore waters are likely to

pose severe challenges for resident species, especially

upon co-occurrence with contaminating hydrocar-

bons (Val et al. 2003). The region contaminated by

spilled oil from the DWH disaster overlapped off the

coast of Louisiana with one of the largest zones of

marine hypoxia in the world (Turner et al. 2012).

The oil-induced structural alterations of gill epi-

thelium that affect regulation of ions (as discussed

above) are also expected to affect other functions of

the gills such as gas exchange (Fig. 1). This may

result in hypoxemia or compromised ability to phys-

iologically compensate for low-oxygen (hypoxia).

Furthermore, surface oil slicks may impair gas ex-

change at the air–water interface, thereby decreasing

oxygenation of underlying waters (e.g., Malan 1986)

and compounding potential challenges to the regula-

tion of dissolved oxygen in resident animals.

Sole and Antarctic fish that were exposed to fuel

experienced impaired abilities to extract oxygen at

low oxygen tensions, indicating impaired com-

pensatory ability for hypoxia (Davison et al. 1993;

Claireaux et al. 2004). Exposure of flounder to

WAF caused a dramatic decline in levels of oxygen

in blood, which was closely followed by a release of

catecholamine and a decline in hematocrit and

hemoglobin of the blood (Alkindi et al. 1996). Simi-

larly, exposure to oil caused a drop in ATP:hemo-

globin levels in exposed fish, which can be indicative

of hypoxemia (Brauner et al. 1999). Exposure of

crabs to crude oil WAF affected respiration rates,

and the oxygen tension at which death occurred

was higher for crabs exposed to oil than for control

crabs; thus there was an increased risk of hypoxic

death (Malan 1986). Furthermore, as dissolved

oxygen decreased, crabs exited their burrows and

climbed through the oil slick at the surface to

escape the oxygen-depleted water, thereby exposing

themselves to floating crude oil and to an increased

risk of direct toxic effects (Malan 1986). Exposure to

fluoranthene and hypoxia had synergistic impacts on

developing zebrafish, in which the co-exposure dra-

matically increased rates of pericardial edema and

spinal deformities relative to individual effects of

fluoranthene and hypoxia (Matson et al. 2008).

That is, hypoxia amplifies the developmental toxicity

of some PAH compounds, and also amplifies the

genotoxicity of petroleum hydrocarbons (Negreiros

et al. 2011). Similarly, synergistic effects on embryo

toxicity in developing zebrafish were detected be-

tween hypoxia and benzo[a]pyrene, between hypoxia

and benzo[k]fluoranthene, and between hypoxia and

complex mixtures of PAHs (Fleming and Di Giulio

2011).

The molecular mechanisms that are responsible

for physiological interactions between PAHs and

hypoxia are not fully known. However, there is

much molecular overlap in intracellular signaling

pathways between PAHs and hypoxia (e.g., AHR sig-

naling and HIF1� signaling) (Prasch et al. 2004;

Harper et al. 2006; Matson et al. 2008; Fleming

et al. 2009) that could facilitate synergistic effects

between these two stressors.

Pathogens

Most wild animals are carriers of pathogens, but

under normal environmental conditions tend to be

asymptomatic because of a robust immune system.

However, upon environmental stress the immune

system may be compromised, enabling outbreaks of

pathogens that can affect health and survival of hosts

in the wild (Snieszko 1974). Petroleum hydrocar-

bons, by way of their known immunotoxicity (for

review, see Reynaud and Deschaux 2006), behave as

such a stressor by compromising the immune system

and thereby increasing the risk of disease, and dis-

ease-associated impacts on fitness in exposed

populations.

Following the Exxon Valdez oil spill (EVOS), dis-

ease was a suspected contributing factor to the col-

lapse of the Pacific herring fishery in Prince William

Sound (PWS) and its unexpectedly slow recovery.

Viral hemorrhagic septicemia virus (VHSV) is indig-

enous in wild populations of Pacific herrings

(Meyers et al. 1994). Following exposure of wild-

caught Pacific herring to weathered crude oil, in-

creasing PAH concentrations were correlated with

increases in VHSV infection and in the mortality

of exposed animals; infection correlated with a de-

crease in inflammatory cells in the liver and indi-

cated a mechanistic link with immunosuppression

(Carls et al. 1998). In 1993, four years after the

EVOS, the herring fishery in PWS collapsed, and

VHSV was at elevated levels in the Pacific herring

that had survived (Meyers et al. 1994). Although a

direct link between the EVOS and the 1993 collapse

of herring is difficult to establish, indirect effects, for

example through facilitating disease, cannot be ruled

out (Carls et al. 2002).

Enhanced susceptibility to infection from exposure

to oil could emerge indirectly from epithelial damage

(e.g., alterations in the structure of the gills and their

mucus linings) that compromises this physical bar-

rier to infection, or directly through molecular
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interactions of hydrocarbons with components of the

immune system (Fig. 1). The intracellular mecha-

nisms through which PAHs exert their immunotoxi-

city appear conserved between mammals and fish,

although the types of immune effects observed

depend on the type of PAH, the route of exposure,

the concentration, and the time-course of response

(Reynaud and Deschaux 2006; Kennedy and Farrell

2008). Intracellular mechanisms of PAH-induced

immunotoxicity are associated with PAH’s activation

of the AHR, CYP1A1-mediated PAH metabolism,

and mobilization of intracellular calcium (Reynaud

and Deschaux 2006). The AHR may be a critical

node that links molecular responses to exposures to

PAH with dysfunction of the immune system. Many

AHR agonists can cause impairment of the immune

system, and emerging evidence indicates that immu-

nity may be mediated through AHR cross-talk with

TGF-� signaling and induction of regulatory T cells,

and through cytokine-mediated effects of AHR on

development of T helper 17 cells (Stevens et al.

2009).

Challenge by pathogens is a comprehensive test for

immunotoxicity as it is a direct test of an organism’s

resilience and its fitness in the wild (Wester et al.

1994). Pacific herring exposed to crude oil WAF ini-

tially (at 1 day post-exposure) exhibited an increase

in resistance to infection with a model bacterial

pathogen (Listonella anguillarum), but by 4 days

this resistance had disappeared (Kennedy and

Farrell 2008). This initial defense could not be sus-

tained over time; during chronic exposures (57 days)

susceptibility to infection-related mortality was sig-

nificantly elevated, and this effect was correlated with

a collapse of the defense otherwise afforded by mac-

rophages. Japanese flounder exposed to oil and

VHSV experienced dramatically increased mortality

relative to that experienced from exposures to

either stressor alone (Song et al. 2011). Similarly,

exposures of Japanese medaka to B[a]P caused a

decrease in resistance to infection by a bacterial path-

ogen (Yersinia ruckeri) in parallel with cellular indi-

cators of suppressed immune function (Carlson et al.

2002). These studies clearly indicate that exposure to

petroleum hydrocarbons increases the risk of disease

outbreaking in wildlife. Contamination by DWH oil

correlated with divergent expressions of genes related

to the immune system in field-collected killifish

(Dubansky et al. 2013), including genes such as

hemopexin, complement factor D, interleukin 8,

alpha-1-acid glycoprotein, and CCAAT/enhancer-

binding protein beta. Although impairment of the

immune system was not directly tested in killifish

exposed to DWH oil, analysis of gene pathways

and gene networks of gill transcriptome responses

associated with oiling implicated alteration of

immune function (Dubansky et al. 2013). Given

the volume of oil spilled during the DWH disaster,

contamination of densely occupied habitats, docu-

mented exposures to wildlife, and the well-known

immunotoxicity of PAHs, impairment of the

immune system and impacts on associated fitness

of resident species is likely (Barron 2012).

Energy budgets and exercise performance

Physiological energetics can provide an integrative

measure of the effects of pollutants on whole organ-

isms, in which disturbance of energy balance can link

cellular/molecular effects of xenobiotics with fitness

effects since deficits in energy budget often result in

compromised growth, performance, reproduction, or

survival (Widdows and Donkin 1991). Since com-

pensations for other naturally-encountered stressors,

such as salinity, hypoxia, temperature, or disease, are

also energetically costly, the addition of stress from

oil pollution can overdraw the energy budget such

that resilience to native stressors is impaired (Fig. 1).

Aerobic scope for activity provides a framework for

interpreting how the environment affects an animal’s

capacity for performance (Fry 1947, 1971; Kassahn

et al. 2009). Furthermore, decreases in scope for

growth caused by contaminants have been linked

to community-level impacts in the field, including

decreases in species diversity and species richness

(Crowe et al. 2004).

Exposures to petroleum hydrocarbons affect met-

abolic scope in diverse species including fish and

invertebrates. Exposures to oiled mesocosms and

oil-contaminated sediments caused reduced growth

in flatfish for months after exposure (Moles and

Norcross 1998; Claireaux et al. 2004). Concentrations

of cellular ATP and ADP were reduced in common

sole (Solea solea) exposed to fuel (Claireaux et al.

2004), and exposures caused a pronounced decrease

in active metabolic rate compared to standard

metabolic rate, resulting in significant decrease in

metabolic scope. These effects correlated with mor-

phological disruption of the epithelium of the gills

and with a decrease in the contractility of heart

muscle. Additional studies in sole indicated that ex-

posures to oil decreased active metabolic rate by a

greater degree than it did basal metabolic rate,

thereby causing a net decrease in metabolic scope

(Davoodi and Claireaux 2007). These results indi-

cated that exposures to oil did not significantly

impact the energy required for minimal metabolic

maintenance, but did impair the animal’s ability to

Oil and natural stressor interactions 639
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mobilize resources when challenged with elevated

metabolic demand. Indeed, when additionally chal-

lenged by low oxygen stress or temperature stress,

animals exposed to oil failed to compensate as well

as control animals (Davoodi and Claireaux 2007;

Claireaux and Davoodi 2010). PAH impacts on met-

abolic scope may be predictive of population-level

effects in sole, as reduced recruitment was recorded

for the year-two age class of resident sole 2 years

after the Erika oil spill in the Bay of Biscay (Davoodi

and Claireaux 2007). Strong correlation between in-

creasing tissue burdens of PAHs and decline in scope

for growth has also been established for bivalves both

in field studies (e.g., Widdows et al. 1995; Widdows

et al. 1997; Widdows et al. 2002; Toro et al. 2003)

and in laboratory studies (e.g., Jeong and Cho 2007).

Impacts of PAHs on metabolic scope for activity may

be underpinned by compromised gills (as discussed

above), in which impaired ion homeostasis causing

increased osmoregulatory costs (Beamish 1978), cou-

pled with impaired transport of oxygen, can tax the

animal’s energy budget and thereby narrow the scope

for activity.

Performance of swimming often is considered an

integrative measure of fitness for aquatic animals

insofar as locomotion can directly impact success

in foraging and in avoidance of predators (Webb

1986) and has been associated with competitive ad-

vantage (Castleberry and Cech 1986). Low concen-

trations of WAF reduced the performance of

swimming by Pacific herring, and impaired their

ability to recover from bursts of swimming

(Kennedy and Farrell 2006). These effects were am-

plified by increasing concentration of WAF and in-

creasing duration of exposure to it, and correlated

with increasing osmoregulatory dysfunction and im-

paired response to stress. Similarly, studies in Coho

salmon showed that exposure of longer-duration to

WAF caused decreased swimming performance even

at lower concentrations (Thomas and Rice 1987;

Thomas et al. 1987), and 28-day exposures caused

decreased food intake, growth, and swim perfor-

mance in seabass (Gravato and Guilhermino 2009).

Exposures to PAHs during development cause

well-documented developmental abnormalities in

the cardiovascular system of vertebrate animals, in-

cluding fish (Incardona et al. 2004). Importantly,

exposures to very low concentrations of PAHs that

do not cause obvious deformities in early-life stages

of development, do, however, cause alterations of

heart morphology and also reduce performance in

swimming in adults (Hicken et al. 2011). Such mor-

phological and physiological effects may explain

the impacts of exposures to PAHs during sensitive

early-life stages on fitness of animals in the wild. For

example, sublethal exposures of pink salmon em-

bryos to weathered crude oil reduced survival in

the wild relative to unexposed controls (Heintz

et al. 2000). It is plausible that this effect could

have been mediated by impaired aerobic capacity

underlain by subtle developmental abnormalities of

the heart, thereby causing behavioral effects such as

altered competitive interactions, foraging ability, or

avoidance of predators, that can emerge at the pop-

ulation level (Scott and Sloman 2004). Exposure to

WAF made from oil collected from the ruptured

Macondo well riser caused diverse developmental ab-

normalities in embryonic and larval zebrafish (de

Soysa et al. 2012). Exposure of developing killifish

embryos to field-collected sediments oiled by the

DHOS was not lethal, but induced cardiovascular

effects, including depressed heart rates and increased

pericardial edema (Dubansky et al. 2013). Since car-

diovascular impacts on adults emerge from expo-

sures in early life to concentrations lower than

those that cause obvious effects in embryos, and

since exposures to sediments collected from sites

impacted by DHOS caused cardiovascular effects

in embryos, it is likely that the risk of cardiovascu-

lar impairments is elevated for residents of sites

contaminated with DWH oil. Elevated risk of such

effects, of course, also elevates the risk of impacts on

fitness.

Indirect effects through biotic interactions

Assessment of damage to natural resources and of

environmental impacts often relies on the study of

stressors on individual species. However, since inter-

actions between species in nature can be strong and

complex, experiments on single species are of limited

use for estimating the impacts of contaminants on

ecosystems, in which indirect effects may cascade

through trophic or competitive interactions. That

contaminants may cause such indirect effects in

communities is well documented (for review, see

Fleeger et al. 2003), and these indirect effects may

be as significant, or more significant, than the direct

effects. That oil pollution causes ecological impacts

through tropic cascades has been documented for

major oil spills, including the EVOS (Peterson

et al. 2003).

In Louisianan coastal wetlands, oil contamination

interacts with human-imposed changes in ecosystem

hydrodynamics to accelerate the loss of high-quality

marsh habitat that supports one of the most produc-

tive fisheries in the United States. Alterations in the

natural regime of water-flow in southern Louisiana
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through channelization of the Mississippi River,

dredging of canals, and development, have steadily

contributed to erosion and subsidence of highly pro-

ductive marsh habitats, making coastal Louisianan

wetlands one of the fastest disappearing landmasses

on the planet (Couvillion et al. 2011). Oil contami-

nation, by killing marsh plants, has accelerated the

rate of erosion following the DHOS (Silliman et al.

2012), which through habitat loss may impact the

resilience of many aquatic species (Fig. 1). This salt

marsh provides crucial habitat to many commer-

cially-important species in the nGOM, such as

brown shrimp, bay anchovy, and Gulf menhaden

(Chesney et al. 2000), as well as Gulf killifish

which are an emerging animal model for studying

impacts of the DHOS. Gulf killifish are the most

abundant vertebrate in coastal Louisianan salt

marshes, and killifish are top contributors to

energy transfer within marshes and provide an im-

portant trophic link between marshes and open es-

tuaries (Meredith and Lotrich 1979; Kneib and

Wagner 1994; Rozas and Zimmerman 2000).

Demonstrated direct effects of the DHOS on resident

killifish (Whitehead et al. 2012; Dubansky et al.

2013) and marsh plants (Silliman et al. 2012) in

the field, and presumably in other species that

share similar habitats and exposures, help set the

context for potential indirect effects from the

DHOS on populations and communities.

Discussion

The acutely toxic effects that follow from direct con-

tact with contaminating oil in the early days of a

marine spill, such as from fouling of feathers and

fur, are well-covered by the media and therefore

well-known to the stakeholders affected by the spill,

to the general public, and to the scientific commu-

nity. These effects are obvious, as they unfold on the

surface of the sea where observation is easy, and

effects are directly attributable to causes. Sublethal

effects, in contrast, often take longer to emerge,

and are therefore often more difficult to link with

the initiating cause. For example, PAHs decrease pre-

cursor proteins of egg yolk (Sherry et al. 2006), sup-

press ovarian aromatase (Patel et al. 2006), destroy

primordial oocytes (Mattison et al. 1980), suppress

spermatogenesis (Frouin et al. 2007), degrade recep-

tors of sex steroids (Ohtake et al. 2007), inhibit sex

steroid synthesis (Seruto et al. 2005), and prolong

time to hatching (Horng et al. 2010; Dubansky

et al. 2013). The consequences of such effects on

reproductive fitness (Fig. 1) may take a generation

or more to emerge. Similarly, other sublethal effects,

such as impairment of development, growth, and

performance, or increased sensitivity to pathogens,

also require time to unfold and be detected. Also,

low to moderate concentrations of oil can long

remain in the environment, particularly in the sedi-

ments, enabling persistent exposure of resident spe-

cies and slowing their expected pace of recovery

(Peterson et al. 2003; Culbertson et al. 2008).

Because of the time lag, and because some responses

are underlain by complex mechanisms, sublethal ef-

fects are more difficult to detect, and take longer to

detect, than do acute effects. Counting dead animals

is easy, although field counts often are fraught with

uncertainty (e.g., Williams et al. 2011). More chal-

lenging is the quantification of impacts from com-

promised immune systems, from impaired

competitive ability due to over-taxation of energy

budgets or malformed hearts, from decreased resil-

ience to spikes in temperature, salinity, and hypoxia,

or from depressed fecundity and fertility. Yet, what is

clear from decades of research on oil spills, is that

such sublethal effects of exposure to petroleum hy-

drocarbon pollutants are important for predicting

long-term effects on populations (Peterson et al.

2003). Importantly, this review highlights how these

sublethal effects can be amplified by the contribution

of suboptimal environmental conditions that are

normally encountered in natural systems, thereby el-

evating the ecological risks of environmental pollut-

ants. Indeed, multiple interacting factors, including

low temperatures, influx of freshwater, and pre-ex-

posure to contaminating oil from the DHOS, are

hypothesized to have contributed to unusually high

number of strandings of dolphins in the nGOM in

the year following the spill (Carmichael et al. 2012).

The effects on the health of animals exposed to oil

are many, as are the potential interactions with ad-

ditional stressors. The underlying mechanisms that

facilitate these effects may in some cases be unique,

but may also intersect. For example, at the morpho-

logical level, compromised gill structure may under-

lie many physiological impairments (Fig. 1). Gills

carry out diverse functions (Evans et al. 2005), in-

cluding osmoregulation, acid/base balance, and gas

exchange, such that the impacts of oil on the integ-

rity of the gills likely compromises ability of the gills

to enable compensatory responses to normally-

encountered environmental variation, such as salinity

and hypoxia, and may provide a route of entry for

pathogens. Furthermore, these impairments require

energy during compensation or repair, thereby

taxing the energy budget that would otherwise be

spent maximizing competitive abilities, foraging suc-

cess, growth rate, and reproductive investments. As

Oil and natural stressor interactions 641

 at U
niversity of Idaho L

ibrary on N
ovem

ber 20, 2014
http://icb.oxfordjournals.org/

D
ow

nloaded from
 

http://icb.oxfordjournals.org/


such, metabolic scope for activity represents an inte-

grative measure of the cumulative impacts of expo-

sures to PAHs and co-occurring stressors that is

relevant for estimating impacts on fitness.

The mechanisms that underlie diverse effects of

petroleum hydrocarbons may also intersect at the

molecular level (Fig. 1). Much of the developmental

toxicity induced by petroleum hydrocarbons is me-

diated through the AHR signaling pathway (Clark

et al. 2010), although mechanisms independent of

the AHR are also important (Incardona et al.

2005). Activated AHR signaling cross-talks with

many other intracellular signaling pathways (Puga

et al. 2009), such that PAH-induced signaling of

AHR may interfere with diverse pathways of cell sig-

naling and contribute to impairment of other phys-

iological processes. Intersection of AHR signaling

and HIF1� signaling at the molecular level (Prasch

et al. 2004; Harper et al. 2006; Matson et al. 2008;

Fleming et al. 2009) could facilitate synergistic effects

between these two stressors. Furthermore, activation

of AHR interferes with immune signaling through

cross-talk with TGF-� signaling, induction of regu-

latory T cells, development of T helper 17 cells,

interference with macrophages’ activities, lymphocyte

proliferation, and increase of intracellular calcium

(Reynaud and Deschaux 2006; Stevens et al. 2009).

Considering these interactions with oil at the mor-

phological and molecular levels, environmental sci-

entists are challenged to deploy measures of multiple

endpoints, including global discovery-based ‘‘omics’’

tools, that cast a broad net to capture the diversity of

potential biological responses.

The complexities of interactions between natural

and anthropogenic stressors like oil spills highlight

the need for advances in both the basic science of

ecotoxicology and the practical deployment of eco-

toxicology (Fig. 2). To advance the basic science of

ecotoxicology, greater integration with the principles

and paradigms of ecophysiology provides a path for-

ward. Additional research is needed to distinguish

how natural stressors affect the toxic impacts of

chemicals by affecting each of bioavailability, toxico-

kinetics, or the sensitivity of organisms (Heugens

et al. 2001), or combinations of those three variables.

Bioavailability of PAHs and metals can be higher at

low salinities by increasing their solubility. Yet, en-

vironmental regulation remains based on measure-

ments of total concentrations of chemicals, rather

than on measurements of bioavailable concentrations

(Van Straalen 2003) that are more relevant for eco-

logical physiology. Toxicokinetics may be influenced

by salinity and oxygen concentrations; high salinity

can increase drinking rates of fish and low oxygen

can elevate ventilation rates, thereby increasing expo-

sure to dissolved chemicals through the gut and

across the gills, respectively. The toxicokinetcs of

PAHs may also be modified by UV radiation; en-

hanced exposure to UV can dramatically increase

the toxic effects of some oils (Incardona et al.

2012b), and thereby increase the risk to organisms

occupying shallow habitats (Incardona et al. 2012a).

Generally, it is not well-understood which of the

many components of oil are responsible for which

of the many toxic effects induced by oil. As oils from

different parts of the world vary dramatically in their

chemical makeup (Wu et al. 2012), data that link

specific chemical constituents to particular endpoints

of toxicity would have practical applications for

estimating the risks of oil spills in different parts of

the world. This may be achieved, in part, through

modern advances in mixture-modeling (Backhaus

and Faust 2012). Suboptimal conditions can tax the

energy budget, such that less energy remains avail-

able for compensatory responses to additional stres-

sors, thereby sensitizing organisms to pollutants.

Dynamic energy budget (DEB) theory (Nisbet et al.

2000; Kooijman 2001) provides a coherent frame-

work for describing how acquired resources are dis-

tributed and partitioned to support development,

growth, and reproduction, in which toxicants

can be viewed as agents that disrupt processes of

allocation (Baas et al. 2010). Since advances in

DEB methods have proven useful for modeling the

physiological impacts of chemical mixtures (Baas

et al. 2010), expansion of the models to include mix-

tures of chemical and natural stressors would appear

a natural extension. The discussion so far in this

paragraph addresses how natural stressors affect the

toxicity of chemicals. The problem may also be ap-

proached from the reverse angle, in which chemical

effects can sensitize the organism to natural stressors.

PAHs affect the structure of the gills’ epithelium,

which in turn compromises physiological functions

associated with ion homeostasis and gas exchange.

Furthermore, molecular responses to the toxic com-

ponents of oil can cross-talk, for example, with the

pathways of hypoxia signaling and immune-system

signaling. This interference may contribute to en-

hanced impacts of oil in organisms challenged with

hypoxia or pathogens. Advances in research on sys-

tems biology that seeks to more explicitly link

changes in gene expression to changes in ecologi-

cally-relevant characters such as growth, perfor-

mance, and reproduction, are likely to enrich our

abilities to predict and track the effects of multiple

stressors on physiology. Such systems-biology models

would be a natural complement to DEB models, and
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integrated together these would significantly advance

the state-of-the-art for ecotoxicology.

That different ecosystems vary dramatically in the

nature and dynamics of indigenous natural stressors

has important implications for the practice of eco-

toxicology. A review of studies of multiple stressors

reveals that organisms living closer to their limits of

physiological tolerance may be at greater risk of im-

pacts from additional stressors (Heugens et al. 2001),

which is consistent with predictions from DEB

theory. Accordingly, assessments of risks or

damage, informed by DEB modeling, may be ad-

justed for those community members living closer

to their tolerance limits. Similarly, prediction of

risk may be adjusted for entire ecosystems that

vary in the proportion of community members

living close to physiological limits such as tropical

or polar ecosystems. The factors that govern popu-

lation and community dynamics of some habitats are

comparatively well-studied, such as the Pacific rocky

intertidal, but others, such as salt-marsh or deepwa-

ter communities in the nGOM, are arguably not as

well-understood. Advances in our understanding of

the ecological variables that govern population dy-

namics for specific species in specific habitats will

offer more nuanced frameworks for estimating

ecotoxicological risk and the impacts of contaminat-

ing oil.

Much environmental monitoring following an oil

spill focuses on detection of oil constituents in envi-

ronmental media, where the presence of chemical is

considered the main determinant of risk. Recogniz-

ing that ambient environmental factors interact with

oil to affect risk, environmental monitoring after an

oil spill should include collection of data, including,

for example, salinity, dissolved oxygen, temperature,

and pathogen loads, that could be used as modifiers

of chemical risk. That is, we need to ensure the col-

lection of data on environmental variability during

the aftermath of an oil spill, and incorporate that

variability into models predicting amplification or

alleviation of risk of damage in resident species.

Monitoring of systems-level endpoints (e.g., tran-

scriptomics, proteomics) that inform mechanism,

and of integrative measurements of physiological

status (e.g., metabolic scope for activity), in care-

fully-selected sentinel species, could enable character-

ization of cause-and-effect in meaningful and useful

ways. Coupled with environmental chemistry and

tracking of ambient environmental variability over

space and time, this approach could inform more

accurate models of energy balance and population

Fig. 2 Model suggesting how modern paradigms and methods may be applied to advance both the basic science and the practice of

ecotoxicology, in ways that lead to greater synthesis with ecological physiology, and that lead to more accurate and useful tools for

assessments of risks and damages from oil spills in natural systems. Although the objectives of the science and of the practice of

ecotoxicology overlap considerably, each also has their distinct agendas that may be advanced in distinct ways. The science of eco-

toxicology could be enriched by more research into how variation in the ambient environment affects the bioavailability, toxicokinetics,

and toxicodynamics of pollutants. Methodological advances in mixture-modeling could help predict the toxic effects of diverse oil types.

DEB theory offers a coherent and comprehensive framework for understanding the impacts of multiple stressors on the fitness of

organisms. Systems biology can offer nuanced understanding of the mechanisms that underlie the interactive effects of multiple

stressors. The practice of ecotoxicology could be enriched by coupling monitoring of ambient environmental variability to monitoring of

chemicals following an oil spill. Those data could then contribute to DEB modeling and population dynamic modeling to more

accurately estimate risk and impacts for resident species. Genome-scale monitoring tools (e.g., transcriptomics, proteomics) could be

deployed in carefully-selected sentinel species to track the complexity of changes in biological responses to the environment over space

and time.
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dynamics that predict risk and that characterize

damage in the real world.

The challenge to environmental scientists, and to

the stakeholders in assessments of risk and damage

to natural resources, is to embrace complexities

inherent in interactions between contaminants and

other naturally-encountered stressors, and then

adopt and apply state-of-the-art paradigms and

tools in ways that match our more nuanced under-

standings of ecological physiology. Just as industry

enthusiastically capitalizes on the latest advances in

geology, physics, and engineering to enable recovery

of energy reserves from increasingly extreme and

remote environments, so too must environmental

scientists and managers be compelled to capitalize

on the latest understanding of the complexities of

chemical effects on organisms and communities to

anticipate, characterize, diagnose, and solve, ecotox-

icological problems.
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