Marine Toxins in Food

Food Toxicology
Instructor: Gregory Möller, Ph.D.
University of Idaho

Learning Objectives

• Understand the linkage between marine algal toxins and human food poisoning.
• Examine Scombroid fish poisoning
• Examine Ciguatera fish poisoning
• Understand paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning, diarrhetic shellfish poisoning, encephalopathic or amnesic shellfish poisoning.
• Examine Fugu poisoning (tetrodotoxin).
• Explore other marine toxins.

Introduction

• Some marine animals produce a large number of secondary metabolites
 – Prey capture, defense, pheromones
• Many are avoided
 – Starfish, sea cucumbers...
• Poisonings from ingestion of seafood
 – Epidemics – major public health issues
 – Severe economic impact
 – Severe impact on marine life
 – ~14% of all food-borne outbreaks

Major Causes of Seafood-borne Illness

• Live molluscan shellfish
 – Vibrio species bacteria
 – Norwalk-like viruses
 – Natural marine toxins***
• Scombroid fish poisoning
• Ciguatera fish poisoning

Estimated US Cases Per Year

<table>
<thead>
<tr>
<th>Disease</th>
<th>Cases Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norwalk-like virus</td>
<td>100,000</td>
</tr>
<tr>
<td>Scombroid fish poisoning</td>
<td>8,000</td>
</tr>
<tr>
<td>Ciguatera fish poisoning</td>
<td>1,600</td>
</tr>
<tr>
<td>Vibrio species</td>
<td>1,060</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>1,000</td>
</tr>
<tr>
<td>Salmonella</td>
<td>200</td>
</tr>
<tr>
<td>Shigella</td>
<td>200</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>200</td>
</tr>
</tbody>
</table>

Natural Marine Toxins

• Scombroid fish poisoning (histamine)
• Ciguatera fish poisoning
• Shellfish toxins (ASP, DSP, NSP, PSP)
• Tetrodotoxin
• Gempylotoxin
• Pfiesteria
Scombroid Fish Poisoning

- Named for the family Scomberidae (tunas and mackerels)
- Can involve any fish containing high levels of free histidine
- Bacteria break down free histidine into histamine

Histamine Formation

\[
\text{Decarboxylase} \quad \text{Histidine} \quad \text{Histamine}
\]

Diamines

- Cadaverine
 \[\text{H}_2\text{N}–\text{CH}_2–\text{CH}_2–\text{CH}_2–\text{CH}_2–\text{NH}_2\]
- Putrescine
 \[\text{H}_2\text{N}–\text{CH}_2–\text{CH}_2–\text{CH}_2–\text{CH}_2–\text{NH}_2\]

Scombroid Fish Poisoning

- Source: improperly handled (time/temperature abuse) mahi mahi, tuna, bluefish, sardines, mackerel
- Range: worldwide

Scombroid Fish Poisoning

- Onset: immediate to 30 minutes
- Initial symptoms: tingling or burning sensation in the mouth, rash on the upper body, drop in blood pressure, headache, itching of the skin
- Later symptoms: nausea, vomiting, and diarrhea
- Duration: 3 hours to several days

Scombroid Fish Poisoning

- Treatment: antihistamines
- Control: proper chilling and temperature control
- FDA guideline: 50 ppm
Scombroid Poisoning Outbreaks (CDC)

- 5% of all food-borne outbreaks reported and 37% of all seafood-related food-borne illnesses
- Approximately 200 outbreaks involving nearly 1400 people from 1973-87.
- Most in HI, FL, CA, WA, NY, CT.

Ciguatera Fish Poisoning

- The most commonly reported marine toxin disease in the world.
 - Associated with consumption of contaminated reef fish.
- 50,000 people per year.
 - Debilitating neurologic symptoms, including profound weakness, temperature sensation changes, pain, and numbness in the extremities.

Ciguatera Fish Poisoning

- Four toxins: complex structures
- Source: certain species of fish feeding on several algae species including Gambierdiscus
- Range:
 - Tropical and subtropical waters worldwide
 - U.S.: East coast, Puerto Rico, Hawaii, Virgin Islands
- Toxins: heat stable

Ciguatoxin

- The two most common toxins associated with Ciguatera are Ciguatoxin and Maitotoxin
 - Some of the most lethal natural substances known (mice 0.45 μg/kg ip).
- Ciguatoxin, a lipid soluble substance, opens voltage dependant sodium channels in cell membranes which induces membrane depolarization.
 - Lethality is usually seen with ingestion of the most toxic parts of fish.
- Heat stable.
Ciguatera Fish Poisoning

- Ciguatoxin biomagnifies up the food chain
- Larger, carnivorous fish are primary vectors

Onset: <6 hours
Symptoms:
- Gastrointestinal: nausea, vomiting, diarrhea
- Neurological: numbness and tingling around mouth, joint pain, muscle ache, headache, temperature sensory reversal
- Cardiovascular: arrhythmia, bradycardia, tachycardia, reduced blood pressure

Duration:
- Usually self-limiting within several days
- Rarely some neurological symptoms may persist for months or years

Treatment:
- Treat symptoms

Control:
- Mouse bioassay
- "Cigua-check" test kit available
- Enzyme immunoassay
- Obtain fish from safe harvest areas

Commonly implicated species:
- Groupers, barracudas, snappers, jacks, mackerel, and triggerfish

FDA guideline: no guideline

Shellfish Toxicity

- Four categories: paralytic, neurologic, diarrheal, and amnestic shellfish poisonings.
- Toxins are found in microscopic diatoms and dinoflagellates with concentrations occurring in filter feeding bivalves, such as clams or mollusks
- Harmful algal blooms (HAB, red tides) are not well-correlated to outbreaks of shellfish poisoning
 - HABs contain toxins

Ciguatera Outbreaks

- 1981: Puerto Rico, 49 cases, 2 deaths (barracuda, amberjack, blackjack)
- 1987: Caribbean, 57 cases (fish casserole)
- 1988: Florida, >100 cases (hogfish)
- 1992: California, 25 cases (flag cabrilla)
- 1994: California, several cases (yellowtail)
- 1995: Guam (sea weed?)

Price

Page 19

Food Toxicology

Page 20

Food Toxicology

Page 21

Food Toxicology

Page 22

Food Toxicology

Page 23

Food Toxicology

Page 24

Food Toxicology
Harmful Algal Blooms (HAB)

- Most due to dinoflagellates – unicellular microscopic phytoplankton
 - Plant / animal properties
 - Motile
 - Chloroplast
 - High toxin level
- Plankton feeders (shellfish) filter from water → accumulate → up the food chain

What Triggers the Blooms?

- Multifactorial
 - Nitrogen / phosphorus
 - Metals
 - Vitamins – vitamin B12, thiamin, biotin
 - Temperature
 - pH
 - Quiet, calm conditions
 - Oxygen
 - ‘Pristine waters’

Where Do Red Tides Occur?

- World wide distribution
- Type of dinoflagellate varies with geographical area
- Ocean currents mix with open coast
- Seasonal
 - Warmer conditions
 - May to October – west
 - July to September - east

Major US HAB Related Events

Shellfish are the Common Vector

- Filter feeders
 - Clams, oysters, mussels, scallops
- Comprise 7% of all marine intoxications
- Heat stable
- Little effect on the host
- Mortality rates:
 - 8-23%
 - 6% - hospitalization, mechanical ventilation, life support

Four Major Syndromes

- Paralytic shellfish poisoning (PSP)
- Neurotoxic shellfish poisoning
- Diarrhetic shellfish poisoning
- Encephalopathic or amnesic shellfish poisoning
- Kills fish, birds, mammals
Paralytic Shellfish Poisoning (PSP)

- Most common – severe – fatal
 - ~10 per year – CDC
- Dinoflagellates
 - *Alexandrium* – not readily visible
 - *Karenia brevis* – red
- Saxitoxin
 - Sodium channel blockers
 - Heat stable

Paralytic Shellfish Poisoning

- Saxitoxins (12-20 analogs)

Paralytic Shellfish Poisoning

- Onset: ½ to 2 hours
- Symptoms: tingling, burning, numbness, drowsiness, incoherent speech, respiratory paralysis
- Duration: respiratory support within 12 hours of exposure results in complete recovery; full resolution in a few days to weeks

High Dose PSP

- High dose
 - Difficulty swallowing
 - Difficulty breathing
 - Respiratory paralysis
 - Death – early as 3 to 12 hours
- Case fatality rate: 5%

Paralytic Shellfish Poisoning

- Control:
 - Mouse bioassay; 10 minute kit; HPLC
 - Monitoring of coastal waters and shellfish
 - Obtain molluscan shellfish from approved waters
- FDA guideline:
 - 0.8 ppm saxitoxin equivalent (80μg/100g) in all fish
PSP Outbreaks

- 1976-89: 42 outbreaks in Alaska
- 1980: California, 98 cases, 2 deaths (oysters)
- 1990: Massachusetts, 6 cases (mussels)
- 1990: Alaska, 11 cases

Neurotoxic Shellfish Poisoning

- Similar to PSP
- Milder
- Dinoflagellate – *Karenia brevis*
- Toxin – *brevetoxin*
 - Sodium channel blocker
 - Not as potent

Neurotoxic Shellfish Poisoning

Polyether brevetoxins

Neurotoxic Shellfish Poisoning

- Onset: a few minutes to a few hours
- Symptoms: tingling and numbness of the lips, tongue, and throat, muscular aches, dizziness, cold hot sensation reversal, diarrhea, vomiting
- Duration: a few hours to several days
- Fatalities: rare

Neurotoxic Shellfish Poisoning

- Source: molluscan shellfish feeding on algae (*Gymnodinium breve*)
- Range: gulf of Mexico and southern Atlantic coast in U.S.; New Zealand
- Toxins: heat stable

Neurotoxic Shellfish Poisoning

- Control:
 - Mouse bioassay
 - HPLC
 - Commercial immunoassay
 - Obtain molluscan shellfish from approved waters
- FDA guideline:
 - 0.8 ppm brevetoxin-2 equivalent (20 mouse units/100g) in clams, mussels and oysters
Neurotoxic Shellfish Poisoning

- Outbreaks:
 - Sporadic and continuous along the gulf coast of Florida, North Carolina, and Texas

Diarrhetic Shellfish Poisoning

- **Europe and Japan**
 - Dinoflagellates
 - *Dinophysis*
 - *Prorocentrum*
 - Toxin: okadaic acid derivatives
 - Within minutes to hours
 - Diarrhea (92%), Nausea (80%), Vomiting (79%)
 - Recovery – 3 days – treat supportively

Diarrheic Shellfish Poisoning

- Source: molluscan shellfish feeding on algae (*Dinophysis* and *Prorocentrum* spp.)
- Range: Japan, southeast Asia, Scandinavia, western Europe, Chile, New Zealand, eastern Canada
- Toxins: heat stable

Diarrheic Shellfish Poisoning

- Onset: 30 minutes to 3 hours
- Symptoms: mild diarrhea, nausea, vomiting, abdominal pain, chills, headache, fever
- Duration: 2-3 days with or without treatment

Diarrheic Shellfish Poisoning

- Control:
 - Mouse bioassay
 - HPLC procedure
 - Molluscan shellfish from approved waters
- FDA guideline:
 - 0.2 ppm okadaic acid plus
 - 35-methyl okadaic acid (DXT 1) in all fish
Amnesic shellfish poisoning

- Diatom: *Pseudo-nitzschia* sp. (7) in mussels
- Toxin: domoic acid
- Neurotoxin that acts on excitatory amino acid receptors and on synaptic transmission

Amnesic Shellfish Poisoning

- Source: Molluscan shellfish (mussels) feeding on algae (*Pseudo-nitzschia* spp.), viscera of Dungeness crab and anchovies
- Range: Northeast and northwest North America

Amnesic Shellfish Poisoning

- Onset:
 - Gastrointestinal symptoms within 24 hours
 - Neurological symptoms within 48 hours
- Symptoms:
 - Gastrointestinal: vomiting, diarrhea, vomiting
 - Neurological: confusion, memory loss, disorientation, seizure coma

Amnesic Shellfish Poisoning

- Duration:
 - Self-limiting within several days
 - Short-term memory loss can be permanent
- Control:
 - HPLC laboratory procedure
 - Obtain shellfish from approved waters
 - Monitoring of coastal water and shellfish

Amnesic Shellfish Poisoning

- FDA guideline:
 - 20 ppm domoic acid in all fish
 - 30 ppm domoic acid in viscera of Dungeness crab
- Outbreaks:
 1987: Prince Edward Island, Canada (mussels)
 - 156 cases, 3 deaths, 12 with permanent short-term memory loss
 1991: Washington state (razor clams)
 - 24 cases
Fugu (Puffer Fish) Poisoning

- Porcupine fish, ocean sun fish, puffer fish
- Japan
 - Incidence ↓
 - Training cooks – chicken?
 - Sense of exhilaration and euphoria
 - Paraesthesia

Tetrodotoxin

- Tetrodotoxin
 - Highest in liver, gonads
 - Potent sodium channel blocker
- Signs within 15 minutes
 - Paraesthesia
 - Nausea
 - Respiratory paralysis

Tetrodotoxin

- Source:
 - Gonads, liver, intestines, and skin of about 80 species of puffer fish, blowfish or fugu
 - Also found in the California newt, parrotfish, frogs (Atelopus genus), blue-ringed octopus, starfish, octopus, and xanthid crabs

Tetrodotoxin

- Range:
 - Primarily the Indo-Pacific Ocean
 - Other cases and deaths have occurred from puffer fish from the Atlantic Ocean, Gulf of Mexico, and Gulf of California

Tetrodotoxin

- Onset: 20 minutes to 3 hours
- Initial symptoms: numbness of the lips and tongue
- Secondary symptoms: prickling of the face and extremities, a sensation of lightness or floating, headache, epigastric pain, nausea, diarrhea and/or vomiting
- Tertiary symptoms: increasing paralysis and death within 4-6 hours
Tetrodotoxin

- Control:
 - Mouse bioassay
 - HPLC method
 - Do not eat pufferfish or avoid improperly prepared pufferfish

- FDA guideline:
 - Puffer fish may not be imported except under specific authorization from FDA

Tetrodotoxin Outbreaks

- Japan:
 - 1974-1983, 646 cases, 179 deaths
 - 30-100 persons per year mostly from home preparation and consumption
 - Mortality about 50%

- California:
 - 1996, 3 cases, no deaths

Case Study: Puffer Fish Consumption, 2002

- On March 18, a woman aged 65 years was brought to the hospital by her husband.
- Hours earlier, they had eaten a meal of pufferfish caught in Titusville, FL. Several minutes after eating the fish, both persons experienced tingling around their lips.
- During the next 2 hours, the woman's symptoms worsened, and she developed vomiting.
- The woman developed increasing chest pain and had mild tachycardia and blood pressure of 160/70 mmHg; she was treated with topical nitroglycerine.
- During the next 4-6 hours, she developed an ascending muscular paralysis. A test of her respiratory function indicated carbon dioxide retention and a rapid decrease to <20% of normal vital capacity for a woman her age. She was electively intubated and placed on a ventilator. Over the next day, she regained her Reflexes and voluntary movement.
- She was extubated at approximately 72 hours and discharged.

Gempylotoxin

- Toxin: a strong purgative oil contained in the flesh and bones of specific species
- Source: Gempylids, escolars or pelagic mackerels (escolar; oilfish, castor oil fish or purgative fish; snek; 'Ex-Lax fish') 18-21% oil (waxy esters)
- Range: almost worldwide

Gempylotoxin

- Symptoms: diarrhea, generally without pain or cramping; ½ to 36 hrs
 - “Keriorrhoea” caused by the wax esters may include oily orange diarrhea, discharge, or leakage from the rectum that may smell of mineral oil.
- Control: avoid specific fish species
- FDA guideline: escolar should not be imported
- Outbreaks: California, 8+ cases, March 2000

Pfiesteria Complex Organisms (PCO)

- *Pfiesteria piscicida* discovered in 1988
- Phytoplankton (dinoflagellate)
 - Up to 24 life stages (4 may be toxic)
 - Eats other organisms, usually algae
Pfiesteria Blooms

- *Pfiesteria* may produce toxins that numb fish, allowing the microbes to feed on the fish
 - 2002 micro-predation research
- High concentrations of *Pfiesteria* can cause deep lesions on fish and may kill them
- Blooms usually exist for only a few hours
 - Several massive fish kills in estuaries along coastal North Carolina

Pfiesteria

- No cases of seafood-borne illness have been reported
- Human health effects have occurred in laboratories where researchers were working in close proximity to high concentrations of the microorganism
- Anglers, water skiers, fish-kill monitors have complained of skin lesions, headaches, lightheadedness, short-term memory loss
- Avoidance recommended