Naturally Occurring Toxicants as Etiologic Agents of Foodborne Disease

Food Toxicology
Instructor: Gregory Möller, Ph.D.
University of Idaho

Learning Objectives

• Examine the etiology (causation) of human disease related to naturally-occurring foodborne toxicants.
• Understand the chemical complexity of foods.
• Explore goiter, tropical ataxia neuropathy (TAN), tropical amblyopia, lathyism, and their linkage to foodborne toxicants.
• Review a range of natural food toxicants that are involved in human disease.

Complexity of Food

Nutrients
• Carbohydrates
• Proteins
• Lipids
• Minerals
• Vitamins

Non-nutrients
• Food Additives
• Naturally Occurring Secondary Chemicals
• Contaminants
• Processing Chemicals

Non-nutrient Chemicals in Different Foods
• Cheddar Cheese 160
• Orange juice 250
• Banana 325
• Tomato 350
• Wine 475
Natural Toxicants and Human Disease

- Goitrogens
- Cyanogenic glycosides
- Lathyrism
- Lectins
- Alkaloids
- Protease inhibitors
- Vasoactive amines

Goitrogens

- Contribute to growth of goiters
- Compounds in Cruciferae
 - *Brassica* species (cabbage, kale, turnips)
 - Seeds only - not leaves
- Combined with iodine deficiency

Cruciferae → Glucosinolates

- A class of about 100 naturally occurring thioglucosides that are characteristic of the Cruciferae and related families.
- Diets of people in many parts of the world include considerable amounts of Cruciferous crops and plants.
 - Processed radish and wasabi in the Far East
 - Cabbage and traditional root vegetables in Europe and North America.
 - Rapeseed, kale, swede and turnip may also contribute since they are extensively used as animal feed stuffs.
 - Glucosinolates in crops, such as oilseed rape (*Brassica napus*) and Brassica vegetables, is undesirable because of the toxicological effects of their breakdown products.
 - Breakdown products include nitriles, isothiocyanates, thiocyanates, epithionitriles and vinyl oxazolidinethiones.

Goitrogens

- Goitrogenic compounds (goitrin) are formed from breakdown of glucosinolates by thioglucosidase
- Goitrogenic metabolites
 - Nitriles; Thiocyanates; Oxazolidine

Goitrogens

- Thyroid gland secretes thyroxine (TY), triiodothyronine (TII), thyroglobulin (TH)
- Controlled by hypothalamus and pituitary
- Hypothalamus produces thyrotropin-releasing hormone (TRH)
• Stimulates pituitary to release thyroid-stimulating hormone (TSH)

Goitrogens

• TSH promotes uptake of iodine, synthesis of TH and release of TY and TII which feed back to reduce TSH
• TY and TII hormones also affect
 – Oxygen consumption, cardiovascular function, neuromuscular activity, cholesterol metabolism, cerebral function
 – Growth and development

Goitrogens

• Goitrin and thiourea inhibit TY synthesis
• Thiocyanates, oxazolidine and nitriles inhibit uptake of iodine by thyroid
• Lack of iodine causes thyroid to enlarge and hypervascularate to trap more iodine = goiter

Goitrogens - Testing

• Weight and histology of thyroid
• Growth rate of patient/animal
• Iodine content of blood and thyroid
• Feed compound - measure uptake of radioactive iodine

Cyanogenic Glycosides

Plant
• Bitter almond
• Cassava root
• Sorghum
• Lima bean

Glycoside
• Amygdalin
• Linamarin
• Dhurrin
• Linamarin

Cassava Root

• The cassava (manioc, yucca; *Manihot esculenta*) is a woody shrub of the Euphorbiaceae (spurge family) that is extensively cultivated as an annual crop in tropical and subtropical regions for its edible starchy tuberous root, a major source of carbohydrate.
Cyanogenic Glycosides

- Cultivars contain varying amounts of CGs
- Cultivar, drought, and food preparation significant for CGs

Cyanogenic Glycosides

- Toxic chemical = hydrogen cyanide
- HCN released when plant is chewed or chopped
- Releases 2 enzymes normally separate
 - Beta-glucuronidase
 - Hydroxynitrile lyase
- Act synergistically to release HCN

Cyanogenic Glycosides

- Can reduce CN by chopping or grinding in water
- Cassava flour is made from boiled or fermented root
- Intestinal bacteria may also be able to break down cyanogenic glycosides to HCN

Cyanogenic Glycosides

Amygdaline (Laetrile)

- Anticancer compound
- Apricot pits
- Not approved in US
- Several deaths in foreign countries

Acute Cyanide Poisoning: Mechanism

- Shuts down cellular respiration - energy metabolism in mitochondria
- Binds ferric ion on cytochrome oxidase in Krebs cycle
- Min lethal dose
 0.5-3.5 mg HCN/kg bw

Acute Cyanide Poisoning

Symptoms

- Muscular paralysis
- Mental confusion
- Respiratory distress
- Rapid onset

Acute Cyanide Poisoning

Treatment

- Nitrite or amyl nitrite
• Converts hemoglobin (Fe$^{+2}$) to methemoglobin (Fe$^{+3}$)
 – Draws CN$^-$ away from cytochrome oxidase
• Add thiosulfate to form thiocyanate

Chronic Cyanide Poisoning

• Occurs in areas of cassava in diet
• Not well understood
• Two disorders
 – Tropical Ataxia Neuropathy (TAN)
 – Tropical Amblyopia

Chronic Cyanide Poisoning

 Tropical Ataxia Neuropathy (Konzo)
 • Atrophy of optic nerve, ataxia, mental disorders
 • More prevalent - West Africa
 • High prevalence of goiter
 • Low levels of S-containing aa
 • Elevated plasma thiocyanate (goitrogen)

Chronic Cyanide Poisoning

 Dietary Modifiers
 • No goiter with adequate iodine
 • Malnutrition increases neural effects
 • Protein-deficient diets
 – Lack S-containing amino acid to convert CN$^-$ to thiocyanate

Chronic Cyanide Poisoning

 Tropical Amblyopia
 • Atrophy of optic nerve
 – Blurred vision, blindness
 • Africa and South America where cassava is staple in diet
 • Reproducible in lab animals

Lathyrisim

• Consumption of peas – esp. *Lathyrus sativus*
 – Grass pea, blue sweet pea, chickling vetch, Indian pea, Indian vetch, white vetch, almorta or alverjón (Spain), *guaya* (Ethiopia), and *khésari* (India).
 – Primarily restricted to areas in Asia/Africa
• Well-known neurodegenerative disease
 – Enzyme inhibitor (BAPN)
 – Neurotoxic amino acid (ODAP)
• Hardy plant, drought resistant

Lathyism
Two forms disease
• Osteolathyism - animals
• Neurolathyism - humans

Osteolathyism
Animals
• Bone deformations
• Weakness in artery wall and connective tissues
• Beta-L-glutamylaminopropionitrile (BAPN)

Osteolathyism
Mechanism
• BAPN inhibits lysyl oxidase enzyme
• Lysyl oxidase is needed to crosslink collagen strands for strength
• Collagen is main component of connective tissue and bones

Neurolathyism
Humans
• Chronic consumption of L. sativus
• Paralysis of legs followed by general weakness and muscle rigidity
• Young man disease
• Sudden onset
 – Calf muscle spasms
• No animal model

Neurolathyism
Humans
• B-N-oxalyl-L-alpha,B-diaminopropionic acid (ODAP)

Neurolathyism
Humans
• Etiologic agent may be ODAP
• Only found with L. sativus species
• OPAP interferes with normal function of nerve synapse
 – Inhibits uptake of glutamic acid
• No animal model to study

Cholinesterase Inhibitors
• Found in a variety of plants - potato, tomato, eggplant
• Western African calibar bean (prototype)
 – Physostigmine
 – Natural carbamate

Cholinesterase Inhibitors

• Solanine - most studied - potato
• Glycoalkyloid - 20-100 mg/kg wet wt
• >200 mg/kg banned by FDA
• Lenape potato variety incident
 – > 300 mg/kg

Cholinesterase Inhibitors

 Solanine

• Greatest concentrations
 – Peel, around sprouts
• Natural/artificial light increases levels
 – Russet Burbank - 250-700 mg/kg – 5 days
 – Green due to chlorophyll
 • Toxicity marker

Cholinesterase Inhibitors

 Solanine

• Documented human toxicity and death
• Potato sprouts, sprouted potatoes, greened potatoes
• Gastric pain, nausea, vomiting, hyperesthesia, increased & accelerated respiration
 – 2/6 deaths
• Concentration unknown

Cholinesterase Inhibitors

 Solanine - Case Study

• 420 mg/kg total alkaloid content
• Approx 50% solanine = 200 mg/kg
• Need to consume 1 kg potato for toxicity due to only solanine
• May act with other glycoalkyloids
 – Chaconine
• Animal LD50
 500-1000 mg/kg
Vasoactive Amines

- Highest in cheese (aged), beer, wine
- Lower levels in banana, tomato, avocado, spinach, orange
- Spoiled meat (see food allergy)
- “Pressor Amines” (catecholamines)
 - Cause vasoconstriction, hypertension

Vasoactive Amines

- Meat/fish - bacterial action
 - Putrescine, cadaverine
- Banana/avocado
 - Dopamine, tyramine
- Catecholamine neurotransmitters
 - Norepinephrine, dopamine, serotonin

Vasoactive Amines: Problems

- Monoamine oxidase (MAO)
 - Widely distributed in body
 - Breaks down vasopressive amines
- MAO inhibitors - treat clinical depression
- Co-exposure to vasopressive amines in food
 - Mostly tyramine

Vasoactive Amines: Tyramine Mechanisms

- Indirect action
- Displaces normal catecholamines from granules in nerves
- Leads to hypertension
- Can be severe in presence of MAO inhibitors

Vasoactive Amines

Levels in Food - mg/kg

- **Tyramine*****
 - Cheese 20-2000
 - Avocado 25
- **Seratonin**
 - Banana pulp 30
– Avocado 10
• All others < 10, all sources

Vasoactive Amines

Symptoms

• Hypertension
 – Mild to severe
• Migraine headache
• Rare - intracranial bleeding/death

Pyrrolizidine Alkaloids

• A problem in food animal forage and human subpopulations exposed acutely in a toxic incident or chronically via cultural foods.
• High levels in some plants >5% dry wt
• 100 different compounds

Pyrrolizidine Alkaloids

• Most human exposure from herbal tea or crop contamination
 – Low level exposure from milk/meat
 – Bush tea in Jamaica
• Decreased use as herbal medicine
 – Comfrey - wound dressing (+other)
• Carcinogenic and liver toxin in animals
 – Epoxidation

PA Hepatotoxicity: Veno-Occlusive Disease

• Occlusive lesions are produced in the centrolobular hepatic veins (obliterating endophlebitis).
• Subendothelial edema, narrowing and occlusion of the lumina, atrophy, and necrosis of liver cells with portal hypertension are the results.

Tajikistan, 1992

• Due to a military blockade there was a late wheat harvest.
• Weeds were able to thrive in wheat fields.
• The harvest contained large amounts of the seed of *Heliotropium lasocarpium*.
 – The first cases occurred 6 weeks after contaminated bread was consumed.
• By the spring of 1993 there had already been more than 3900 cases.
• Patients at Stage I had abdominal pain, nausea, vomiting and asthenia.
• In Stage II hepatomegaly followed.
• Stage III was characterized by ascites.
• In the final stage there is hepatic encephalopathy.
• Case fatality ratio was 1.3% and increased with age.

Protease Inhibitors
• Anti-nutritional compounds
 – Legumes, grains, potatoes, eggplant, onion
• Inhibit gastric enzymes that break down proteins
 – e.g. trypsin (protease)
• All toxicity studies in animals
 – Human relevance unclear

Protease Inhibitors
• Pancreatic hypertrophy
 – Pancreatic hypersecretion of amino acid-rich proteins
 • aa deficiency
 • Growth retardation
• Similar mechanism of lathryism

Other Possible Natural Toxicants
• Caffeine
• Spices
• Licorice, nutmeg, sassafras
• Phytoalexins

Vicine and Convicine
• Fava bean alkaloids
• Causes favism in people who have an inherited absence of the enzyme glucose-6-phosphate dehydrogenase (G6PD) in their red blood cells
 – Headaches, dizziness, nausea, yawning, then
 – Vomiting, abdominal pain, and fever.
 – At this point, symptoms either spontaneously subside,
 – Or acute hemolytic anemia via oxidative stress occurs

Vicine and Convicine
Lectins
• Proteins or glycoproteins that bind carbohydrates
• Cause cells to agglutinate
• Basis for blood-type assays (hemagglutination)
• Decrease nutrient absorption from intestinal cells

Lectins: Sources
• Plant (800 species) and animal tissues
• Black beans, soybeans, lima beans, kidney beans, peas, lentils

Lectins: Problem
• Cause growth retardation from consumption of raw product
• Some very toxic (legume-specific)
 – Ricin - castor bean - rat LD50 0.05 mg/kg
 – Kidney bean - 0.5% rat diet two wks
• Growth retardation
 – 0.5-1% of diet black bean and soybean
• Heating destroys toxicity

Lectins: Mechanism of Action
• Unknown; complex
• Prevents nutrient uptake
• Gut flora involved
 – Germ-free animals show less effects
• Immune component?