

# The sine rule and cosine rule

## Introduction

To **solve** a triangle is to find the lengths of each of its sides and all its angles. The **sine rule** is used when we are given either a) two angles and one side, or b) two sides and a non-included angle. The **cosine rule** is used when we are given either a) three sides or b) two sides and the included angle.

## 1. The sine rule

Study the triangle ABC shown below. Let B stands for the angle at B. Let C stand for the angle at C and so on. Also, let b = AC, a = BC and c = AB.



The sine rule:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

## Example

In triangle ABC,  $B = 21^{\circ}$ ,  $C = 46^{\circ}$  and AB = 9cm. Solve this triangle.

## Solution

We are given two angles and one side and so the sine rule can be used. Furthermore, since the angles in any triangle must add up to  $180^{\circ}$  then angle A must be  $113^{\circ}$ . We know that c = AB = 9. Using the sine rule

$$\frac{a}{\sin 113^\circ} = \frac{b}{\sin 21^\circ} = \frac{9}{\sin 46^\circ}$$

So,

$$\frac{b}{\sin 21^\circ} = \frac{9}{\sin 46^\circ}$$

from which

$$b = \sin 21^{\circ} \times \frac{9}{\sin 46^{\circ}} = 4.484$$
cm. (3dp)

Similarly

$$a = \sin 113^{\circ} \times \frac{9}{\sin 46^{\circ}} = 11.517$$
cm. (3dp)

copyright © Pearson Education Limited, 2000

4.6.1

## 2. The cosine rule

Refer to the triangle shown below.



| The cosine rule:               |                                |                               |
|--------------------------------|--------------------------------|-------------------------------|
|                                |                                |                               |
| $a^2 = b^2 + c^2 - 2bc\cos A,$ | $b^2 = a^2 + c^2 - 2ac\cos B,$ | $c^2 = a^2 + b^2 - 2ab\cos C$ |
| $a = b + c = 20c \cos n$ ,     | $b = a + c = 2ac \cos D$ ,     | $c = u + b - 2ub\cos c$       |

#### Example

In triangle ABC, AB = 42cm, BC = 37cm and AC = 26cm. Solve this triangle.

## Solution

We are given three sides of the triangle and so the cosine rule can be used. Writing a = 37, b = 26 and c = 42 we have

$$a^2 = b^2 + c^2 - 2bc\cos A$$

from which

$$37^{2} = 26^{2} + 42^{2} - 2(26)(42)\cos A$$
$$\cos A = \frac{26^{2} + 42^{2} - 37^{2}}{(2)(26)(42)} = \frac{1071}{2184} = 0.4904$$

and so

$$A = \cos^{-1} 0.4904 = 60.63^{\circ}$$

You should apply the same technique to verify that  $B = 37.76^{\circ}$  and  $C = 81.61^{\circ}$ . You should also check that the angles you obtain add up to  $180^{\circ}$ .

## Exercises

- 1. Solve the triangle ABC in which AC = 105 cm, AB = 76 cm and  $A = 29^{\circ}$ .
- 2. Solve the triangle ABC given  $C = 40^{\circ}$ , b = 23cm and c = 19cm.

## Answers

1. a = 53.31 cm,  $B = 107.28^{\circ}$ ,  $C = 43.72^{\circ}$ . 2.  $A = 11.09^{\circ}$ ,  $B = 128.91^{\circ}$ , a = 5.69 cm.