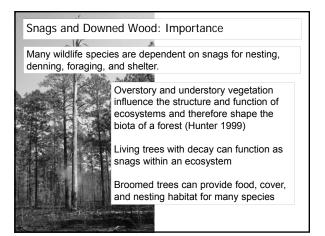
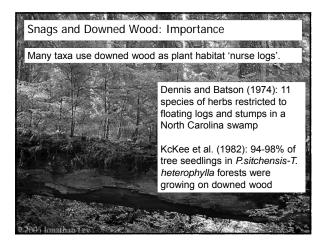


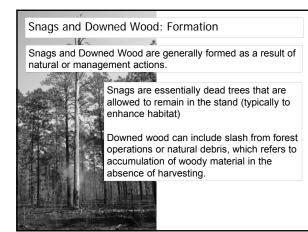
Snags and Downed Wood: Importance

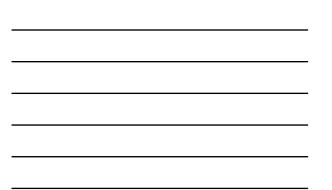
Snags and Downed Wood are important components of the fuel's complex. They are also important for wildlife habitat (woodpeckers, etc) and for nutrient dynamics.

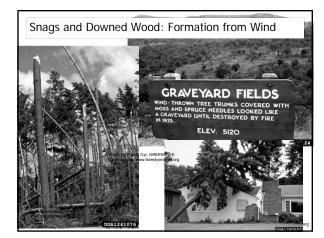
These represent a significant % of the forest biomass (aka fuel loading), accounting for 5-30% in some forests

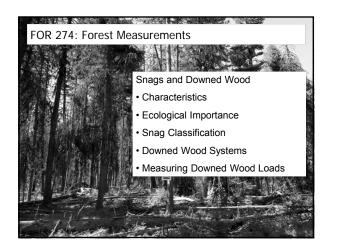

Downed wood serves the ecosystem by also providing physical protection (barriers limiting trampling) to soils and plants.

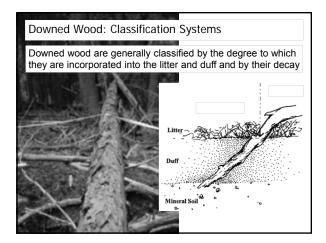

Highly decayed (rotten) downed wood can hold water and nutrients during dry periods.


1

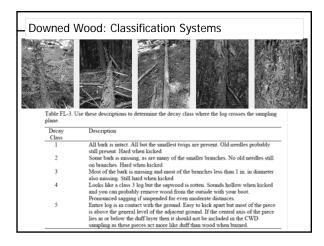

Table 2. Inputs of coarse woody debris (CWD) and other aboveground litter types in northern coniferous forests.							
Species	Stand age (years)	Boles	FWD	NWD	GV	CWD%	Reference
Mass (g-m-2-year-1)	(j)						
Abies balsamea	5060	170	305	375		20	Sprugel 1984
	Mortality period	1780	350	300		73	Sprugel 1984
	47	25					Lang 1985
	81	82					Lang 1985
Abies laslocarpa – Picea engelmannii	>350	48	49	103	5	24	Laiho and Prescott 1999
Picea glasca	120	7	80	124	26	3	Laiho and Prescott 1999
Picea contorta	90	68	90	150	56	22	Laiho and Prescott 1999
Pseudotsuga menziesii	60-100	135-392					Sollins 1982
	450	480-960*	130-180	170-280		56-66	Grier and Logan 1977
Pseudotsuga menziesil + others	450	266-395					Sollins 1982
Tsuga heterophylla – Picea sitchensis	105	274					Sollins 1982
Nitrogen (g-m ⁻² -year ⁻¹)							
Abies balsamea	5060	0.284					Sprugel 1984
Abies laslocarpa – Picea engelmannii	>350	0.067	0.296	0.874	0.071	5	Laiho and Prescott 1999
Picea glasca	120	0.006	0.330	0.830	0.318	1	Laiho and Prescott 1999
Pinus contorta	90	0.049	0.151	1.026	0.637	4	Laiho and Prescott 1999
Pseudotsuga menziesii	450	0.39	0.38	1.41		18	Sollins et al. 1980
Phosphorus (g-m ⁻² -year ⁻¹)							
Abies laslocarpa – Picea engelmannii	>350	0.002	0.024	0.059	0.005	2	Laiho and Prescott 1999
Picea glasca	120	0.001	0.028	0.121	0.067	1	Laiho and Prescott 1999
Pinus contorta	90	0.003	0.014	0.089	0.105	3	Laiho and Prescott 1999
Pseudotsuga menziesil	450	0.06	0.05	0.38		12	Sollins et al. 1980





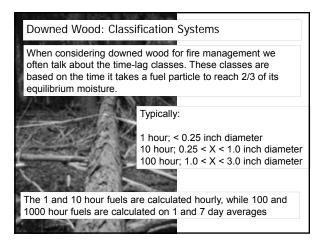


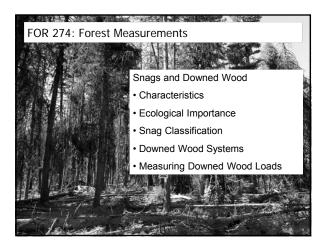
	Sna	ags: C	lassifica	ition Sy	/stems	6		
1000		0	0	,	,	their amo y have lir		ecay, their ent.
S	inag [Decay						
	Code	Bark	Heartwood Decay	Sapwood Decay	Limbs	Top Breakage	Bole Form	Time Since Death
30	1=	Tight intact		None to incipient	Mostly Present	May be present	Intact	≤5 years
	2	50% loose or missing	None to advanced			May be present	Intact	>5 years
	3	75% missing	Incipient to advanced	None to 25%	Few remain	Approx. 1/3	Mostly intact	>5 years
3e	4	75% missing	Incipient to advanced	25%+	Few remain	Approx. 1/3 to 1/2	Losing form, soft	>5 years
	5	75%+ missing	Advanced to crumbly	50%+ advanced	Absent	Approx. ½+	Form mostly lost	>5 years
	Implie	s recent mortal	lity, within the last		ecay Classe	s		
			Class 1	Class 2	Class 3	Class 4 Cla	5 5	

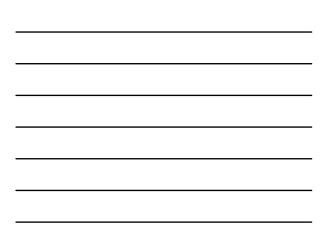


			0	,	,	e degree to which and by their decay
og De	Bark	Twigs	Texture	Shape	Wood Color	Portion of log on ground
oue •	Intact	Present	Intact	Round	Original	None, elevated on supporting poi
	Intact	Absent	Intact to soft	Round	Original	Parts touch, still elevated, saggin slightly
**	Trace	Absent	Hard large pieces	Round	Original to faded	Bole on ground
••	Absent	Absent	Soft blocky pieces	Round to oval	Light brown to faded brown	Partially below ground
••	Absent	Absent	Soft, powdery	Oval	Faded light yellow or gray	Mostly below ground
	Decomposi Class 1	ition Lo	og Decomposition Class 2	Log Decompo Class 3		Domposition Log Decomposition Class 5

Downed V	Vood: Class	sification Sy	/stems	
Log decomposition Class 1	Log decomposition Class 2	Log decomposition Class 3	Log decomposition Class 4	Log decomposition Class 5
	ſ	DEGREE OF DEC		
Bark Intact				Bark Absent
Structurally Sound Branches Present-				Not Sturcturally Sound Branches Absent
No Invading Roots-				Rooted Throughout
No Established Veg	etation		,	Trees, Shrubs, and
Table adapted from	work by Fogel et al 19	73, Maser et al 1979		Moss Present



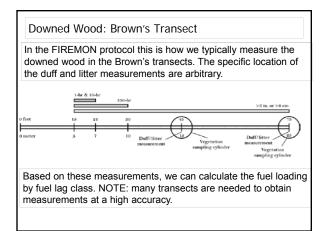

Feature	Log Deca	y Class				
	1	2	3	4	5	
Bark	Intact	Intact	Trace	Absent	Absent	
Twigs <.003 m	Present	Absent	Absent	Absent	Absent	
Specific Gravity	.474		.420	.222	.046	
Texture	Intact	Intact, partly soft	Hard, large pieces	Soft, small, blocky pieces	Soft, powdery	
Wood Color	Original Color	Original color	Reddish brown or original color	Reddish or light brown	Red-brown to dark brown	
Epiphytes	None	None	Conifer seedlings	Vaccinium, moss, TSHE seedlings	Vaccinium, moss, TSHE seedlings	
Invadingroots	None	None	Conifer seedlings	Vaccinium, moss, TSHE seedlings	Vaccinium, moss, TSHE seedlings	
Fungi fruiting	Similar to class 4	Cyathus, Tremella Mycena, Collybia, Polyporus Fomes, Pseudohydmen	Polyporus, Polyporellus, Pseudohydnum, Fomes	Cortinarius, Mycena, Marasmius	Cortinarius Collybia, Cantharellus	



Feature	Log decay cla	SS			
	Class 1	Class 2	Class 3	Class 4	Class 5
Bark	Intact	Intact	Trace	Absent	Absent
Twigs≤3 cm	Present	Absent	Absent	Absent	Absent
Texture	Intact	Intact to partly soft	Hard, large pieces	Small, soft, blocky pieces	Soft and powdery
Shape	Round	Round	Round	Round to oval	Oval
Color of wood	Original color	Original color	Original to faded color	Light to dark brown or faded brown, grey, or yellow	Light to darl brown or faded grey o yellow
Portion of log on ground	Log elevated on branches	Log elevated on branches but slightly sagging	Log is sagging near ground or touch ground	Log is touching ground or partially buried	Log is nearly completely buried

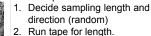
Downed Wood: Brown's Transect

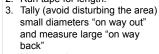
We typically calculate surface woody fuel loading via the line intercept method, often called the Brown's Transect.


Notes:

Include downed woody material under 6 feet in height
Your sampling protocol will determine over what length you tally your 1, 10, 100, and 1000 hour fuels.

• Your sampling protocol will determine at what lengths you measure duff and litter depths.

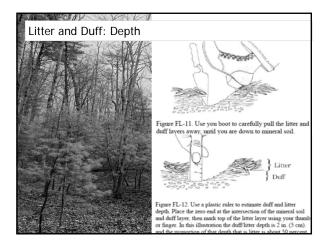

Brown (1974

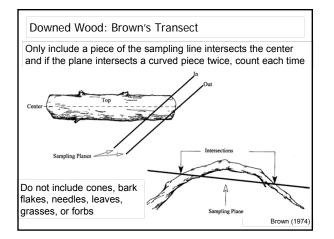


Downed Wood: Brown's Transect

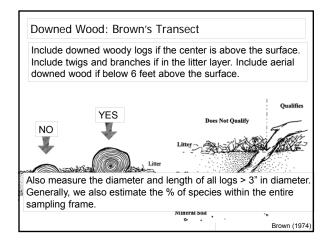
The line intercept method can provide weights and volumes per acre for all diameter size classes. The method also provides depth of fuel and duff at locations along the line.

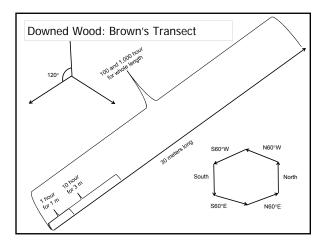
Main Steps:

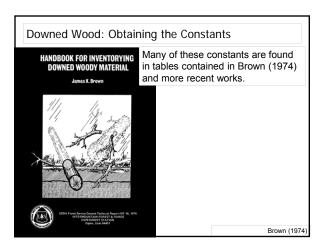



4. Measure slope

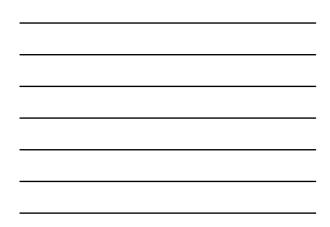
5. Calculate fuel loading


Brown (1974)





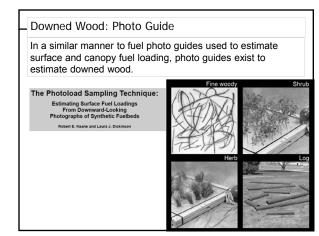
Do	owr	ned	Wo	od: F	ield S	Sheet	s and	Cal	cula	tion		
								Litter De	pth (in)	Duff De	pth (in)	
				Sound	Sound	Rotten	Rotten					
Transect						Diam. (in)	Length (ft)	3 ft	9 ft	3 ft	9 ft	
1	12	8	8	5	38			1.2	1.4	0.5	0.7	
				4	21	6	18					
2	6	12	11	11	32	0	18	0.8	1.1	1	0.8	
2	0	12	- 11	11	52			0.8	1.1	-	0.0	
		Tor ion 1	ns/A for f	uel 3 i	(11.64 nches	* n * c and g	¹² * s * reater: ²]* s * a		,			
cla	SS, C	1 ² = r	near	square	e diame	ter, s =	for flat specific rection f	grav	ty, L			it size

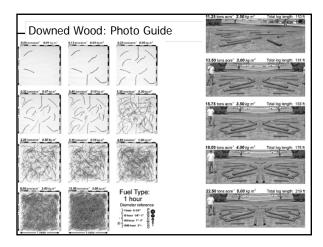


	$c = \sqrt{1 + \left(\frac{r}{2}\right)}$	$\left(\frac{\text{Percent slope}}{100}\right)^2$		
Table 1.	Slope correction f on a slope basis t	actors for conv o a horizontal	ertin basis	ng weight/acre
	: Correction	- 1		Correction
Slope	: factor	Slope	:	factor
Percent	с	Percent		С
0	1.00	60		1.17
10	1.00	70		1.22
20	1.02	80		1.28
30	1.04	90		1.35
	1.08	100		1.41
40 50	1.12	110		

Display=0 PP Over type// Average d ² Species// Average d ² Inscher Inscher ² Inscher ² 0 - 0.25 PP 0.0342 PP, LP 0.0248 LP 0.0201 L 0.149 0.149 Composite 0.151 Oceposite 0.151 0.25 - 1 LP .344 PP, C .317 0.25 - 1 LP .344 PF, C .275	Instruct Instruct Instruct PP 0.0342 FP, LP 0.0248 LP 0.020 L 0.049 S, DF, AF, C 0.0122 DF, GF, C, S 0.0122 L 0.0149 Composite 0.0151 Composite .0151 .0151 LP .344 PF, C .317 S, DF, AF, C .358 DF, GF, LP, L, S .278 Composite .289 Composite .289
0 - 0.25 PP 0.0542 PP, LP 0.0248 LP .0201 L .0149 S. DF, AF, C .0122 DF, GF, C, S .0122 L .0149 Composite .0151 0.25 - 1 LP .544 PP, C .304 DF, GF, LP, L, S .378	PP 0.0542 PP, LP 0.0248 LP .0101 L .0149 S, DF, AF, C .0121 L .0149 L .0131 DF, F, C, S .0121 Composite .0151 .0151 LP .0151 .0151 LP .049 .0151 LP .0151 .0151 Composite .0151 .0151 LP .0154 .015 Composite .0151 .0151 Composite .0152 .0151 Composite .0151 .0151 Composite .0151 .0151 Composite .0151 <
LP .0201 L' .0149 S, DF, AF, C .0122 DF, GF, C, S .0122 L .0149 Composite .0151 0.25 - 1 LP .544 PP, C .317 S, DF, AF, C .304 PF, GF, LP, L, S .278	LP .0201 L .0149 S, DF, AF, C .0122 DF, GF, C, S .0122 L .0149 Composite2/ .0151 Composite .0151 LP .344 PP, C .317 S, DF, AF, C .304 DF, GF, LP, L, S .278 L, PP .238 Composite .289
S, DF, AF, C .0122 DF, GF, C, S .0122 L .0149 Composite2 .0151 Composite .0151 0.25 - 1 LP .344 PP, C .317 S, DF, AF, C .304 DF, GF, LP, L, S .278	S, DF, AF, C .0122 DF, GF, C, S .0122 L .0149 Composite// .0151 Composite .0151 .0151 LP .344 PF, C .317 S, DF, AF, C .304 DF, GF, LF, L, S .278 L, DF, C, SA4 DF, GF, LF, L, S .278 Composite .238 Composite .289
L .0149 Composite2/ .0151 Composite .0151 0.25 - 1 LP .344 PP, C .317 S, DF, AF, C .304 DF, CF, LP, L, S .278	L0149 Composite2/ .0151 Composite .0151 LP GAF, C .304 DF, C .317 S, DF, AF, C .304 DF, GF, LP, L, S .278 L, PP .238 Composite .289
Composite .0151 0.25 - 1 LP	Composite .0151 LP 3.44 PP.C .317 S. DF, AF, C .354 DF, GF, LP, L, S .278 L, PP .258 Composite .289
0.25 - 1 LP .344 PP, C .317 S, DF, AF, C .304 DF, GF, LP, L, S .278	LP .344 FP, C .317 S, DF, AF, C .304 DF, GF, LP, L, S .278 L, PP .238 Composite .289 Composite .289
S, DF, AF, C .304 DF, GF, LP, L, S .278	S, DF, AF, C .304 DF, GF, LP, L, S .278 L, PP .238 Composite .289 Composite .289
	L, PP .238 Composite .289 Composite .289
	Composite .289
Composite .289	ND 45 7.12 ID 7.50
1 - 3 PP, AF 3.12 LP 3.50	
S, DF, C, LP 2.87 DF, PP, GF 2.83	S, DF, C, LP 2.87 DF, PP, GF 2.83
Composite 2.76 Composite 2.76	
	L 2.17 L, C, S 2.30 Composite 2.76 Composite 2.76
L 2.17 L, C, S 2.30	
Composite 2.76 Composite 2.76	
Composite 2.76 Composite 2.76	

Diameter cla	ss (inches):	0-0.25	0.25	5-1	1-3	3+Sound	3+Rotten
Specific gra	vity :	0.48	0.48	3	0.40	0.40	0.30
	age secant of nor rrecting orientat : Species <u>1</u> /		s for sla			-	
0 to 0.25	PP Others		1.25		1.25	<u>.</u>	
0.25 to 1	PP Others		1.25		1.25		
1 to 3	PP Others		1.22		1.22 1.10		
3+	All (an assumption)		1.00		1.00		
1/pp=pond	erosa pine; Other	e=based	on data	for D	ouglas_fir	-	




ransect 1-hr 10-hr Diam. (in) Length (ft) 0iam. (in) Length (ft) 3 ft 9 ft 3 ft 9 ft 1 12 8 8 5 38 1.2 1.4 0.5 0.7 -					Sound	Sound	Rotten	Rotten	Litter De	pth (in)	Duff Dep	oth (in)
1 12 8 5 38 1 1.2 1.4 0.5 0.5 2 6 12 11 11 32 6 18 1 18 1 10	ransect	1-br	10-br	100-br					3 ft	9 ft	3 ft	9 ft
Equation for Transect 1 (50'), 1-hr fuels of PIPO on flat ground: Tons/Acre = (11.64 * n * d ² * s * a * c) / L = (11.54 * 7 * 0.0342 * 0.48 * 1 * 1) / 50	1				5		Diam. (m)	cengen (rej				0.7
2 6 12 11 11 32 0.8 1.1 1 0.4 Equation for Transect 1 (50'), 1-hr fuels of PIPO on flat ground: Tons/Acre = (11.64 * n * d ² * s * a * c) / L = (11.54 * 7 * 0.0342 * 0.48 * 1 * 1) / 50 = <					4				112	21.4	010	
Equation for Transect 1 (50'), 1-hr fuels of PIPO on flat ground: Tons/Acre = (11.64 * n * d ² * s * a * c) / L = (11.54 * 7 * 0.0342 * 0.48 * 1 * 1) / 50							6	18				
Tons/Acre = (11.64 * n * d ² * s * a * c) / L = (11.54 * 7 * 0.0342 * 0.48 * 1 * 1) / 50	2	6	12	11	11	32	-		0.8	1.1	1	0.8
	Eau							* a * c)			-	

Size Class	Constant	n	ď²	s	а	С	nł	Tons/acre
0 - 0.25	11.64	7	0.0122	0.48	1.40	1.00	24.00	0.03
0.25 -1	11.64	20	0.304	0.48	1.13	1.00	24.00	1.60
1-3	11.64	4	2.87	0.40	1.10	1.00	40.00	1.47
3+ Sound	11.64	∑d ² fo 176		0.40	1.00	1.00	200	4.10
Total Fuel L Duff Depth : Litter Depth		O tons/acre)					Brown (19

