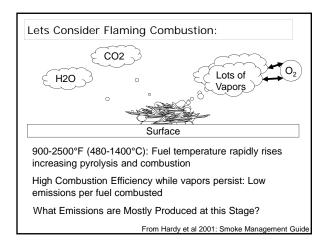
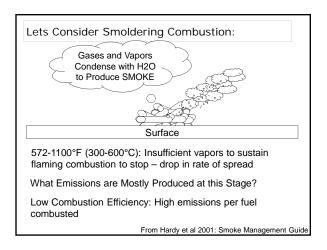
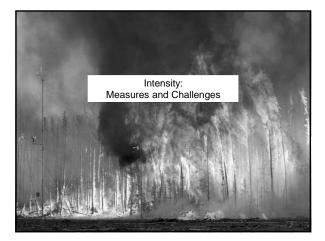
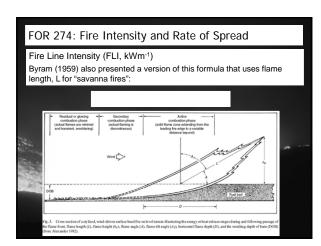


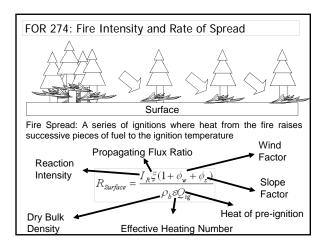
There are fire behav	several terms used to describe differention:	nt forms of
Term	Flames / Direction	Spread
Smoldering	No	Low
Creeping	Small	Low
Running	Well-defined head	High
Backing	Moving against wind, downhill, away from head	Low
Torching	Surface fire igniting occasional crowns or shrubs	n/a
Spotting	Firebrands and embers are carried by convection and ignite outside the fire perimeter	n/a
Crowning	Trees and crowns ignite and travels independent of surface fire	High
Blowup	Sudden increase in fire intensity or rate of spread	

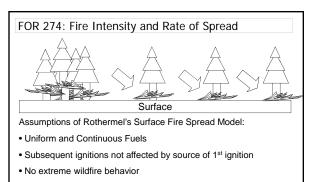




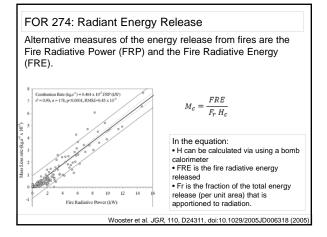




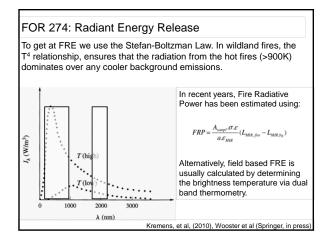

r is the rate of spread.



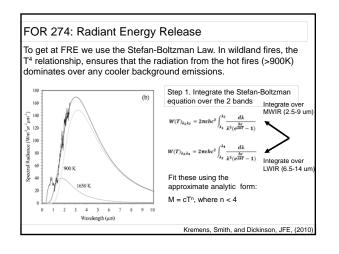
FOR 274: Fire Intensity and Rate of Spread Fire Line Intensity (FLI, kWm ⁻¹) Other studies have developed similar flame length fire line intensity relationships (Alexander and Cruz, 2012):								
	Byram (1959) ^A	Pine litter with grass understorey	$I_B = 259.833 \cdot L^{2.174}$	Field	0.5-2.1	56-2232		
	Fons et al. (1963)	Wood cribs	$I_B = 22.1 \cdot L^{1.50}$	Laboratory	0.4 - 1.8	68-510		
	Thomas (1963) ^B	Wood cribs	$I_B = 229 \cdot L^{1.5}$	Laboratory	1.2-5	36-360		
	Anderson et al. (1966)	Lodgepole pine slash	$I_B = 54.6 \cdot L^{1.54}$	Laboratory	1.1 - 2.9	781-343		
	Anderson et al. (1966)	Douglas-fir slash	$I_B = 103.4 \cdot L^{1.5}$	Laboratory	0.8-2.2	619-464		
	Newman (1974) ^C	Unspecified	$I_B = 300 \cdot L^2$	Rule of thumb	NA	NA		
	Nelson (1980)	Understorey fuels	$I_B = 510.7 \cdot L^{2.0}$	Field	0.1 - 1.2	21-387		
	Nelson (1980)	Southern USA fuels	$I_B = 703.6 \cdot L^{2.0}$	Field	0.1 - 2.1	5-332		
	Clark (1983)	Grasslands (head fire)	$I_B = 1488.7 \cdot L^{1.01}$	Field	0.1 - 4.2	65-126		
)	Clark (1983)	Grasslands (backfire)	$I_B = 147.2 \cdot L^{0.57}$	Field	0.3-1.7	41-474		
	Nelson and Adkins (1986)	Litter and shrubs	$I_B = 483.3 \cdot L^{2.03}$	Field and laboratory	0.5-2.5	98-275		
2	van Wilgen (1986)	Fynbos shrublands	$I_B = 402 \cdot L^{1.95}$	Field	1.0-4.5	194-599		
3	Burrows (1994)	Eucalypt forest	$I_B = 245.1 \cdot L^{1.3}$	Field	0.1-10	37-436		
1	Weise and Biging (1996)	Excelsior	$I_B = 367.7 \cdot L^{1.43}$	Laboratory	0.07 - 2.1	9-820		
5	Vega et al. (1998)	Shrublands	$I_B = 141.6 \cdot L^{2.03}$	Field	1.5-6.5	294-690		
5	Catchpole et al. (1998)	Shrublands	$I_B = 454.3 \cdot L^{1.79}$	Field	0.5 - 18	100-770		
	Fernandes et al. (2000)	Shrublands	$I_B = 695.0 \cdot L^{2.21}$	Field	0.2 - 3.1	12 - 760		
7		Jack pine forest (crown fire)	$I_B = 431 \cdot L^{1.5}$	Field	-	-		
7 3	Butler et al. (2004) ^D Fernandes et al. (2009)	Maritime pine forest (head fire)	$I_R = 302.2 \cdot L^{1.84}$	Field	0.1 - 4.2	30-352		

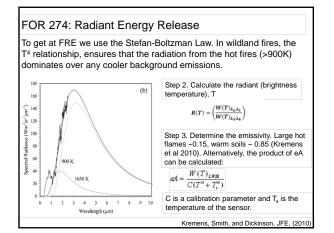

- Describes fire behavior at flaming front of fire
- Weather and Slope are constant over fire affected area

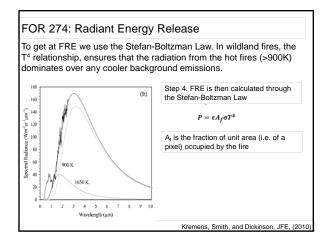
FOR 274: Flame Temperatures

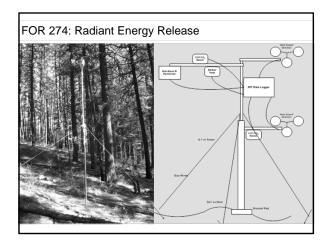

Flame temperature is often measured using thermocouples (Type K). Maximum temperature can be inferred using heat sensitive ceramics and paints.

These work by changing color when a certain temperature is met or by breaking (ceramics)

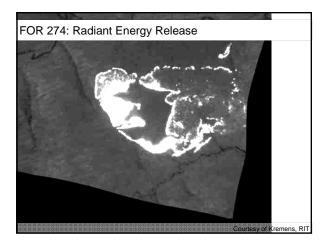


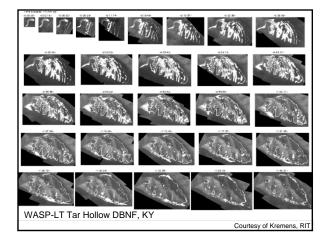


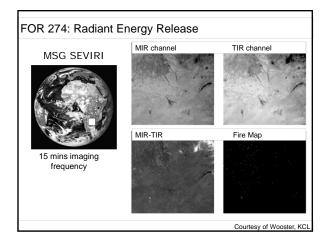


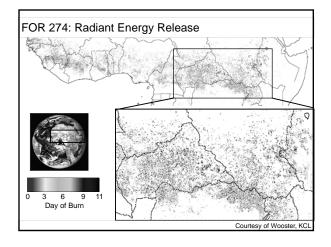


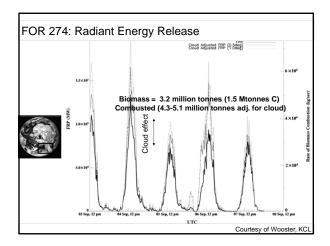


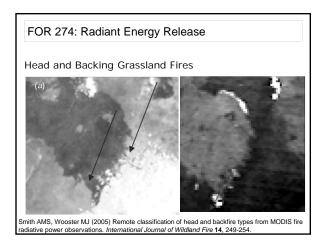


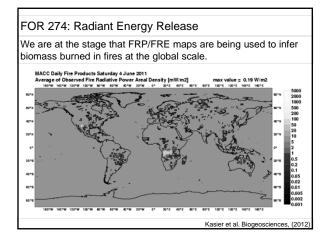


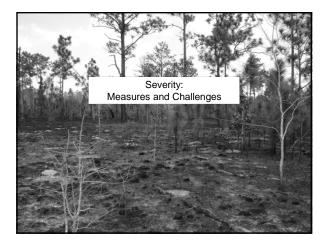






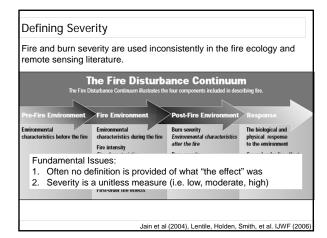




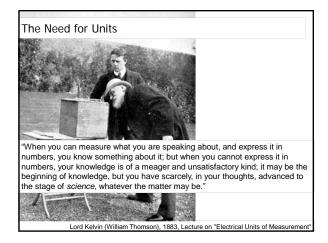


FOR 2	74: Radiant E	nergy Rel	ease		
Field]	FLI (kW m ⁻¹)	Referenc	e	
	Headfire	4048-10 906	Stocks et	al. (1996)	
		93-3644	Trollope	et al. (1996)	
		2810 ± 893	Trollope	(1996)	
		43-9476	l. (2003)		
		130-9274	Smith (20	004)	
	Backfire	20-160	Trollope et al. (1996)		
		77 ± 29	Trollope	(1996)	
Image		ΣFRP	Radiative FLI	Fire front	
		(MW)	(kW n)	length (km)	
	Mean Head	3405	153	16.9	
	Range Head	12132	222	38.3	
	Mean Back	88	17	6.0	
	Range Back	91	— — —	3.4	
	Head : Back mean ratio	38.5	9.3	2.8	

Defining Severity


Severity is, by nature, a value laden term, with negative perceptions often applied.

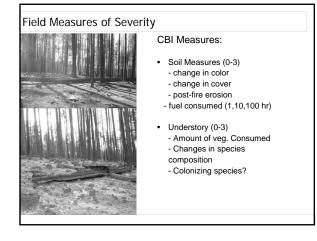
• Negative Connotations: severity = bad

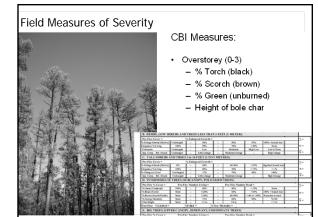

The problem is that although some fires may "appear" severe, they might not be ecologically bad for the ecosystem.

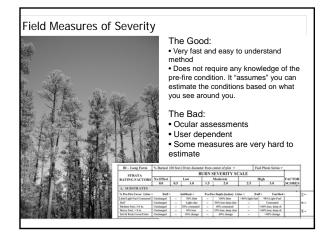
Many definitions exist: * Fire duration and heat transfer

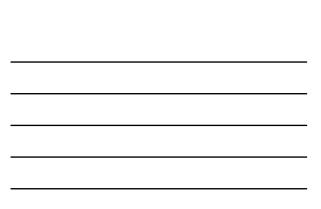
- * Vegetation mortality
- * Change in surface reflectance
- * Alteration in soil properties * Changes in the litter and duff layers * Impacts on seed banks

Field Measures of Severity


PO - Abridged Registration Code Field Date analyzey Plot Aspact	Examin	_	Prijat Co					
Field Date analysis						Place No.		
Public Date a maligney			Fire Date -			0.4 %	and a	
Plot Damdia Overske			Plan N. She UTM 8 pla			CPS D		
						0010		
Plot Dignotor Under of Number of Phil Photos			Ditter and					
Number of Part Photos	_	10	Photo (Ers.)	_				_
H - Long Form	% Burned	00.6-#	(H m)-diames	a from	center of plan =	P.	el Photo Sation =	
STRATA			8		SEVERITY SC			
RATING FACTORS	No Hillert		Low		Moderate		16gb	VACTOR
	4.3		1.0	1.5	2.0		3.8	SCORES
A. SUBSTRATES		_	·	-				
S Rodin Cone: Line			table t	2-5	wheel factors Lit	ter: Be	C End Red	
And all Part Constant	Undwiged		1 NPA MAR		105-104	HERE BEEN	Whitigh Part	<u> </u>
0.4	Undergel	÷	Lafe-dur	-	NPs has deep due?		Constant	-
Mindham Park, 3 8 m.	Undwight	<u> </u>	(Phonesed)		#Ps ensured			-
	Underget	11	10% 100	1.1	(Ph hm, day dur			_
and & Rock Count Color	Underget	<u>1</u>	Wichage	1.1	afful large		- BPLchage	
B. HERBS, LOW SP.	RUBIAND	TREE	N LENS THAT	STEE				-
Pro-Flex Carser =			most Granth +			-		
"s Pullage Alternal (hits lens)	Undwight		1 10		10	172	-offs - brand loss	
Paganco School	100	1						
Colongents	Undwaged		1.07		Maker	Webter	Low's Note	
Spp Comp - But Alband	Undward		Litterheige		Makenething		High charge	
C. TALLSHIRLING		1.0.1		5 348.7				
Pro-Des Court 1			need Granth 1	7.742.1	10.10			_
Pro Para Carese *	- 0		35		0.30	1975	Sandor band her	
	100				10	1175		
Pergency N.Long					- 50	1100	11%	
Sp. Corp. : Ref. Alband	Undergel		Litechage		Midnaschulg		High Change	
D. INTERMEDIATI		<u> </u>		<u> </u>			High Change	_
Pro-Flets % Caner = % Gene //indexed)	Profil	re Nami	her Living=		Pro-Fire Number	Dead +	here	
A Gene (Couplered)	100		104			110		
							-bPs clearly be	_
h.brown(handrivede)	Next	<u> </u>	-26	· · ·	40.50%	1.00.00.00	Nore due to total	
NuConogo Munaday Charillengte	No.	<u> </u>	170	÷		10	1.100	
Patifies "sciented *		4.44		1.1.1	100		1.178	_
E. ING TREES (LPI				0000		_		-
Pro-Fire No Canar #		re Nami	her Living=		Pro-Fire Number			
N(inter/(indexed)	100%	1.0	5		5	110	Note	
S. Riak (Funds)	Net		5.00%		35	> 8/Ph	10Ph - Ingels Inc.	
Alberty (Londo) and (New		3.004			< Music NPg		_
PLCanopy Mutatity	Next		10		30	30	5.100	_
Our Regis	New		1.0.00		4.0		17.0	
Past Fire . N/Gedled +		1.00	- 1	True Mb	intrakij =	_	_	_
Community NationCo	manual e		C81+	Sum of	Scores / N.Rated:	Num of Sc.	res NRdol	< 81
					der diery (A+B+C)		-	-
			_		Overstary (0+1)			
				Total P	be(A+B+C+D+E)	2		


The CBI field measure of severity was developed to calibrate the dNBR severity spectral index.

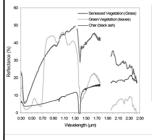

- Measures scaled 0-3
- 15m radius plots
- Used 5 Strata:


 - SoilUnderstoreyShrubs / saplings
 - Sub-canopy trees - Overstorey

The CBI is now a part of FIREMON, a national protocol developed by the US forest service for measuring and monitoring vegetation and forests.

Field Measures of Severity

The Ugly: • These estimates are done after the fire (often in an area unseen before the fire) • Many of these field measures are <u>not</u> measurable by satellites sensors (which is unfortunate given CBI was developed as ground validation for the dNBR spectral index...)

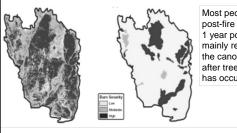

The Ugliest: Given there is often no pre-fire data, how do you know whether effects are caused by the fire; and even if you know they are, what magnitude of those effects are due to the fire?

Smith et al. (2009); Roy et al (2012)

Remote Measures of Severity

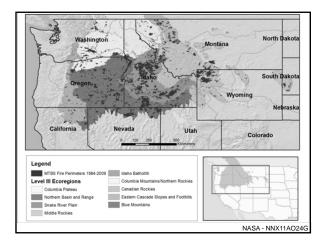
The widely applied Normalized Burn Ratio (NBR) takes advantage of how TM bands 4 and 7 change following a fire.

 $\mathbf{NBR} = \rho_4 - \rho_7 / \rho_4 + \rho_7$

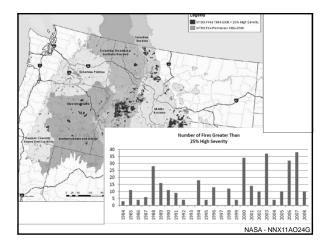

For both green and senesced vegetation, replacement of the vegetation by charred surfaces results in a significant drop in NIR reflectance.

In TM band 7, charcoal and soil often have a higher reflectance than green vegetation.

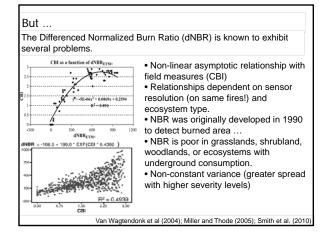
Remote Measures of Severity

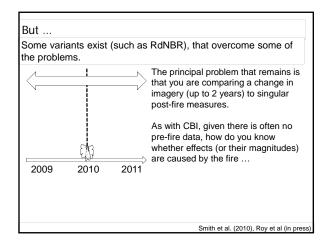

The Differenced Normalized Burn Ratio (dNBR) is a change detection method that calculates the difference between post- and pre-fire NBR values as a measure of severity.

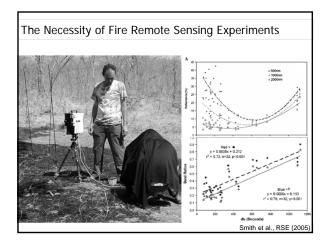
dNBR = NBR_{pre}- NBR_{post}

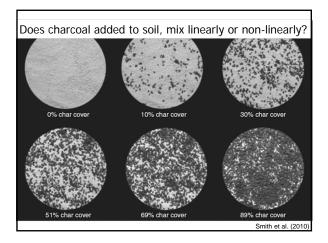


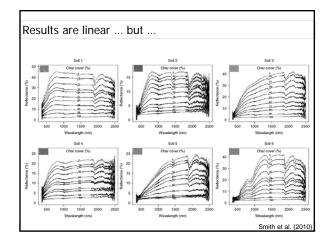
Most people use a post-fire image from 1 year post-fire. This mainly represents the canopy condition after tree mortality has occurred.

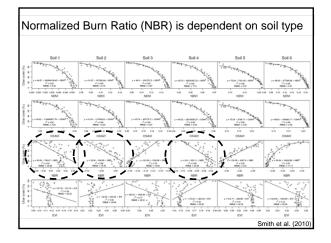


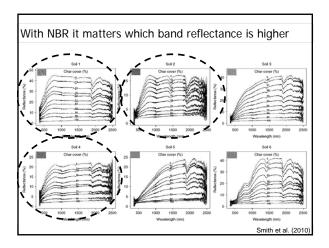


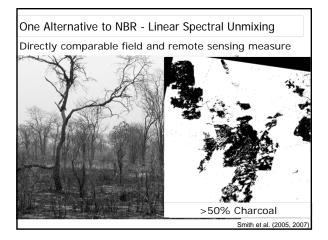






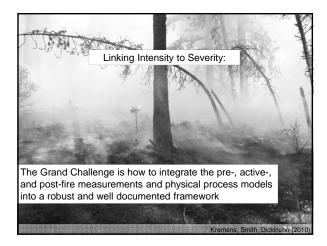








Regressing (1-year post fraction (imr	fire) fro	m % cha	ar	a fee		
	12	Fraction cha	r cover Equation	A. A.		
			Equation			的 影響的現象。
Canopy variables % Live tree	0.69	23.17	$-483 \times x + 487$	2 90 - 15 P		
Crown scoren	0.09	23.17	$-201 \times x + 224$	A Date of Long		
Crown consumption	0.65	26.25	$499 \times x - 422$		\$5.98 AU\$86	BE ABOUT
Total crown fire effects	0.57	18.88	$298 \times x - 197$	出现的问题	<u>家口教 自己</u> 保護	
Subcanopy variables	0.27	10.00	270 A A - 177	The second second		
Bole scorch	0.72	18.27	$411 \times x - 318$	Salara a st	1000	And a state of the state of the
Basal char	0.33	28.77	$277 \times x = 206$	to a local de la companya de la comp	1000	and a stand
Basal scorch	0.21	4.81	$35 \times x + 65$	Rolling and St	de la brance	the pilling the same
Average bark thickness	0.48	0.28	$-3.6 \times x + 4.3$		COLUMN TO A COLUMN	the delacer
Bole scorch at 1 m	0.43	20.29	$243 \times x - 144$	together and the	A DE LA DE L	Car Car
Total BI 1 m tree	0.64	36.96	$289 \times x - 396$	RIP CARINE	Sec. State Party and	A CONTRACT ON CONTRACT
Floor BI	0.44	49.37	$607 \times x - 339$	and a start and a start	State Name	State of the second second
Litter depth	0.49	0.24	$-3.4 \times x + 3.5$	al la constant	and the second	Sales and the second second
Litter organic weight	0.71	3.99	$-80 \times x + 82$	18 A.	and the decide	
				Smith e	t al. (2007); Le	ntile et al (200



Regressing (1-year post fraction (imr	fire) fro	m % ch		
		Fraction cha	r cover	
	r ²	s.e.	Equation	
Canopy variables				
% Live tree	0.69	23.17	$-483 \times x + 487$	AND A REAL PROPERTY OF AN ADDRESS OF
Crown scorch	0.17	31.73	$-201 \times x + 224$	
Crown consumption	0.65	26.25	$499 \times x - 422$	
Total crown fire effects	0.57	18.88	$298 \times x - 197$	
Subcanopy variables				
Bole scorch	0.72	18.27	$411 \times x - 318$	A CARL COMPANY OF COMPANY OF COMPANY
Basal char	0.33	28.77	$277 \times x - 206$	
Basal scorch	0.21	4.81	$35 \times x + 65$	
Average bark thickness	0.48	0.28	$-3.6 \times x + 4.3$	SAM SCINER & CONSCIONS OF
Bole scorch at 1 m	0.43	20.29	$243 \times x - 144$	States and the second
Total BI 1 m tree	0.64	36.96	$289 \times x - 396$	The second se
Floor BI	0.44	49.37	$607 \times x - 339$	
Luter depth	0.49	0.24	$-3.4 \times x + 3.5$	
Litter organic weight	0.71	3.99	$-80 \times x + 82$	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
				Smith et al. (2007); Lentile et al (2009)

