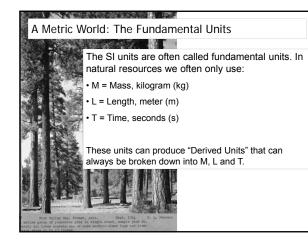


	Measu	remer	nt Syst	ems: English and Metric
	Conv	ersion Facto	or Table	
А	Multiple inch This can also be w acre ampere-hr (A-h) ángström (Å) atm (atmosphere) atm, std atm, std atm, std atm, std atm, std	by 2:54 ritten as: 1 inch 43,560 3,600 1.01325 76.0 760 33.90 29.92 14.696 101.825	To Get cm = 2.54 cm ft ² coulomb (C) m bar cm of Hg at m of Hg at 30 lbGin ² abs (p) kPa	In Natural Resources we use both the English and Metric measurement systems The English system is used by land/resource
в	atm, std atm, std atm, std bar bar Btu Btu	1.013x10 ⁵ 1.03323 14.696 0.9869 1x10 ⁵ 778.169 1055.056	Pa kgf / cm ² psia atm, std Pa ft-lbf J	managers The Metric system is used in scientific reports and proceedings
	Btu Btu Btu / hr Btu / hr	5.40395 2.928x10 ⁻⁴ 1x10 ⁻⁵ 1.055056 0.216	psia:ft ³ kWh therm kJ / hr ft·Ibf / sec	Its essential to know both systems and how to convert between them
	Btu / hr Btu / hr Btu / Ibm Btu / Ibm Btu / Ibm-R	3.929x10 ⁻⁴ 0.2931 2.326* 25,037 4.1868	hp W kJ / kg ft ² / s ² kJ / kg K	The standard CNR conversion sheet is on the course website
с	Btu / Ibm.ºF Btu / Ibmol·R cal (g-calorie) cal	4.1868 4.1868 3.968x10 ⁻³ 1.560x10 ⁻⁶	kJ / kg·*C kJ / kmol·K Btu ho-hr	


• Temperature, Kelvin (K): 1/273.15 of the thermodynamic temperature of the triple point of water

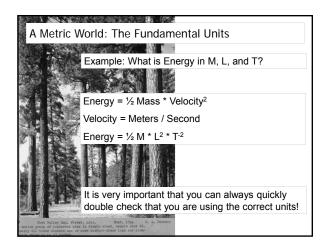
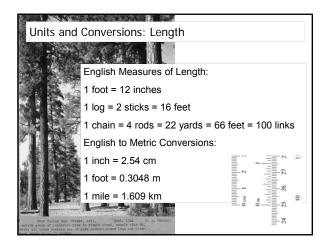
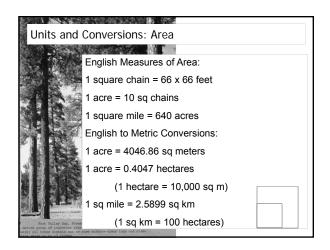
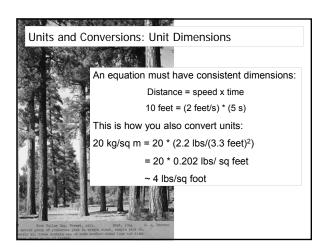
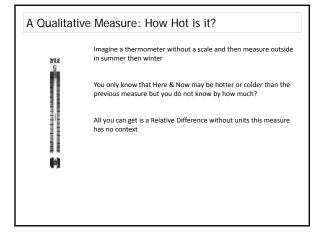


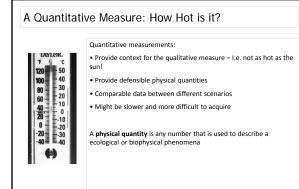
TABLE 2-2. Examples of Derived Units				
Quantity	SI Unit	Symbol		
Area	square meter	m ²		
Volume	cubic meter (the liter, 0.001 cubic meter, is not an SI unit although commonly used to measure fluid volume)	m ³		
Specific volume	cubic meter per kilogram	$m^3 \cdot kg^{-1}$		
Force	newton $(1 \text{ N} = 1 \text{ kg} \cdot \text{m} \cdot \text{s}^{-2})$	N		
Pressure	pascal (1 Pa = $1 \text{ N} \cdot \text{m}^{-2}$)	Pa		
Work	joule $(1 \text{ J} = 1 \text{ N} \cdot \text{m})$	J		
Power	watt $(1 W = 1 J \cdot s^{-1})$	W		
Speed	meter per second	$m \cdot s^{-1}$		
Acceleration	(meter per second) per second	$m \cdot s^{-2}$		
Voltage	volt $(1 \text{ V} = 1 \text{ W} \cdot \text{A}^{-1})$	V		
Electric resistance	ohm $(1 = 1 V \cdot A)$	Ω		
Concentration (amount	mole per cubic meter	$mol \cdot m^{-3}$		

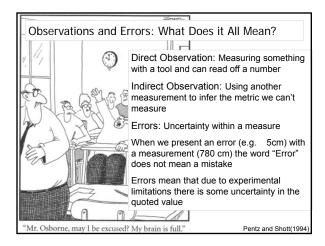


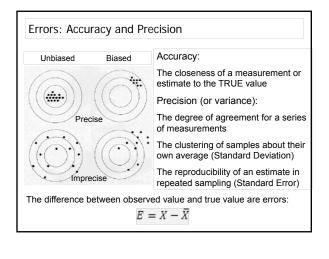


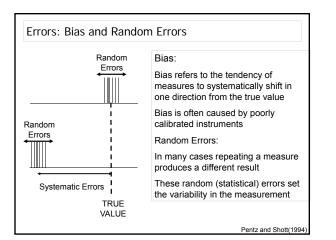

	4. SI Prefixes an	d Abbreviations	1011
Prefix	Symbol	Factor	
/otta	Y	1024	1 000 000 000 000 000 000 000 000
etta	Z	1021	1 000 000 000 000 000 000 000
xa	E	1018	1 000 000 000 000 000 000
octa	Р	1015	1 000 000 000 000 000
era	Т	1012	1 000 000 000 000
riga	G	109	1 000 000 000
nega	M	106	1 000 000
cilo	k	10^{3}	1 000
necto	h	10 ²	100
leca	da	10 ¹	10
leci	d	10^{-1}	0.1
enti	с	10^{-2}	0.01
nilli	m	10^{-3}	0.001
nicro	μ	10^{-6}	0.000 001
nano	n	10 ⁻⁹	0.000 000 001
pico	р	10 ⁻¹²	0.000 000 000 001
emto	f	10-15	0.000 000 000 000 001
tto	а	10-18	0.000 000 000 000 000 001
epto	Z	10-21	0.000 000 000 000 000 000 001
octo	У	10^{-24}	0.000 000 000 000 000 000 000 001

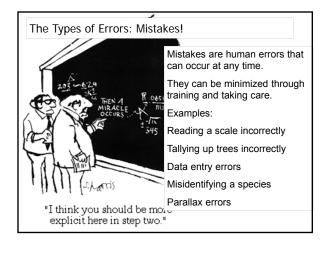




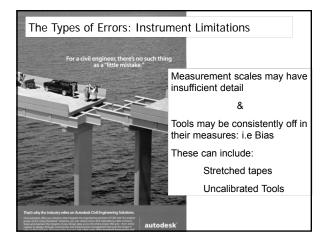


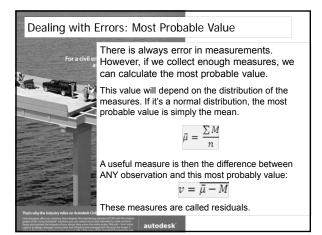


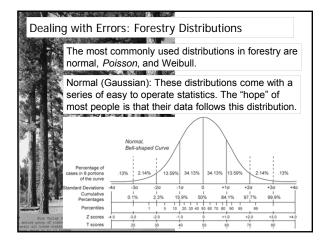


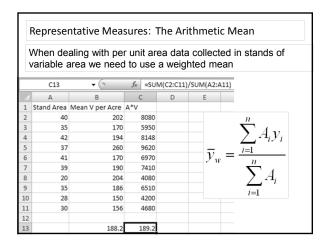


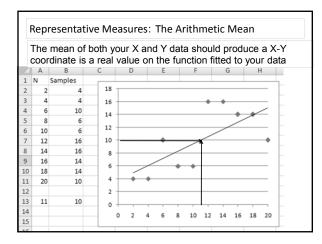




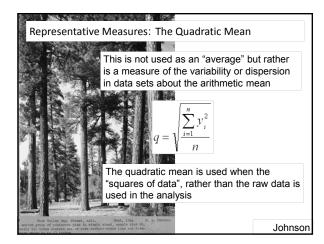


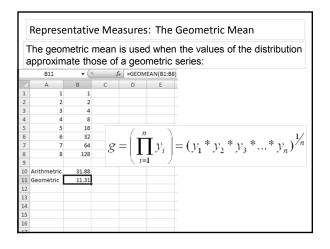




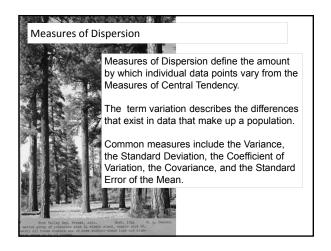


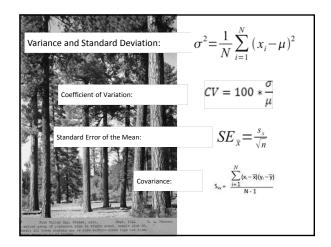
R	epresent	ative Mea	asures: The Arithmetic	c Mean
1	N	Samples		
2			This is the most comm	•
3	1	3	also called the mean of	or average.
4	2	4		λ7
5	3	10		$\sum_{i=1}^{N}$
6	4	2	Population:	$\sum y_i$
7	5	8	•	$\mu = \underline{i=1}$
8	6	18		N
9	7	5		1.
10	8	17		n
11	9	9		$\sum y_i$
12	10	10	Sample:	$\overline{1}$ $ i=1$
13				$x = \frac{1}{12}$
14	=AVERA	AGE(B3:B	12) = 8.6	n
15				



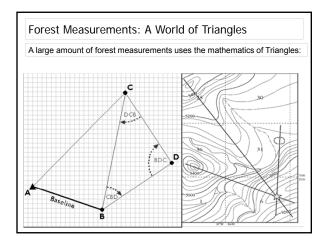


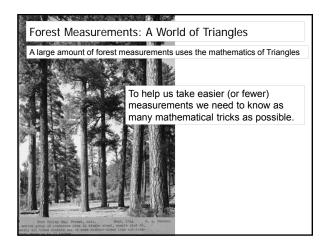




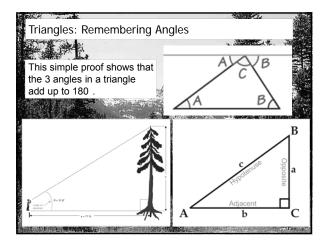


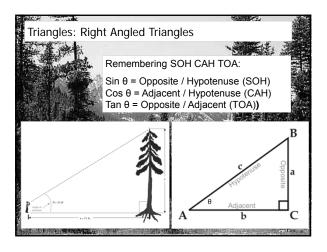
		•	•	•) in a stand c	ve
	a perio	d of 60	years r	nay look	like thi	s:	13 F	
1	Age	ΔDBH	_		-			
2	10	1	18					
3	20	3	16			-		
4	30	5	14					
5	40	8	12					
6	50	12			,			
7	60	16	å					
8	Note	. The C		ie Meer			llor then bot	h +k
9						,	aller than bot	i u
10	Arith	metic N	lean or	the Qua	adratic I	Mean		
11				+				
12			2	•				
13			o —	-				
			0	20	40	60	80	
14								
14 15					Age			

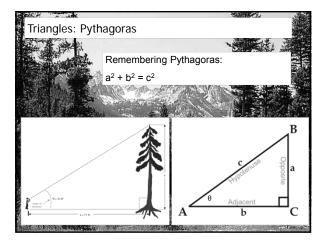


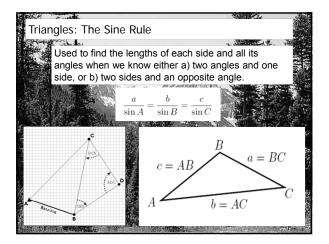


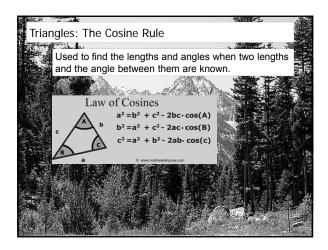


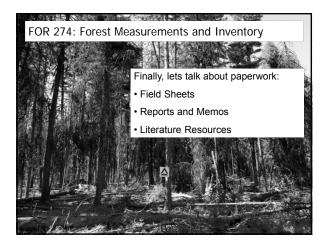


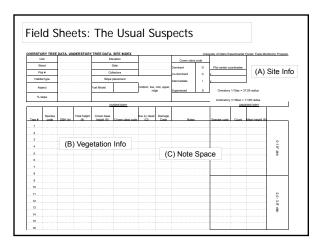


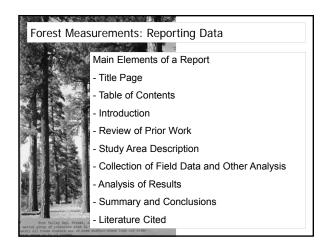


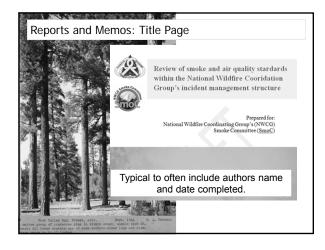


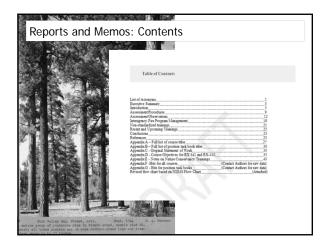




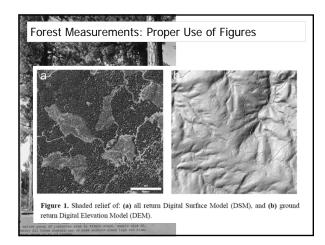


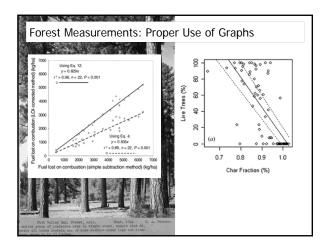


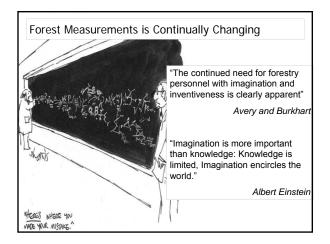




Forest Meas	surements: Communication
Contraction of the Rest State of the State	
Forestry is a profess	ional career where communication skills are highly valued.
1960 S. S. S. S.	
ALL ALL	Many new foresters make reports too short. Many times the
	report is the only evidence that any work was done. To
	communicate professionally you need to:
	 Use correct grammar and spelling
	2. Use appropriate analysis methods
	3. Use jargon sparingly. If you must, do so correctly
	4. Take care and time to neatly present your results
1998	Take Care: Many forestry professors will grade your essays /
	reports with a zero if they contain more than 1 spelling
	mistake!
	Always use word processor spellcheckers and read the essays
	over before handing them in.
Fort Valley Exp. Forest, A mature group of ponderosa pine in learly all trees contain one or more	Var. 0974. Aless o. a. rearest virgin stand, sample plot 50. surface-clear logs and dism-
tone more up to 13 inches.	






The Conference		
Table 1. Common lidar sensor parameters for natural resource applications.		
Parameter	Value	
Wavelength	1.064 µm	
Pulse Repetition Rate (PRF)	~50-150 kHz	
Returns per pulse	3-4	
Pulse width	10 nano-seconds	
Beam divergence	1080 m rad	
can angle	<15° off-nadir, 30° total look	
can pattern(s)	Ziz-zag, parallel, elliptical, sinusoidal	
PS frequency	1–2 Hz	
NS frequency	50 Hz (200 Hz max)	
Operating altitude	100-3,000 m (6,000 m max), average ~2,000 m	
ootprint size	0.10-0.30 cm	
Pulse Density	$> 4 \text{ pulse/m}^2$	
Accuracy (Vertical/Elevation)	<0.15 m	
Delivery format	Binary lidar exchange format (LAS)	

