
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fixed Area Plots: Overview	
Plot: Small area sampling unit that are normally a square, rectangle, or circle	
Strip or Transect: Rectangular plot that's length is very much greater than its width	Fixed Area
Individuals are selected by probability	
proportional to frequency (the more common it occurs the more likely it is measured)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
You are asked to conduct a forest inventory for the USFS using $1 / 17^{\text {th }}$ acre plots. \qquad

Assuming flat ground, what is the plot's radius? \qquad
Area $=\pi r^{2}$

Area of acre $=43,560 \mathrm{ft}^{2}$
Area of $1 / 17^{\text {th }}$ acre $=43,560 / 17=2,562 \mathrm{ft}^{2}$

Area $=2,562$ (tin
$\mathrm{r}^{2}=2,562 / \pi=815.6$
$\mathrm{r}=\sqrt{ }(815.6)=28.6 \mathrm{ft}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Area $=\pi r^{2}$ so $r=\sqrt{ }($ Area $/ \pi)$
To remember hectare area:
1 hectare plot is a $100 \times 100 \mathrm{~m}$ square.
4TI:
TABLE 11-1 Dimensions of Commonly Used Fixed-Area Plots

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fixed Area Plots: Nested Plot Designs

Fixed Area Plots: Nested Plot Designs

Example: Fire Effects Monitoring

Hudak et al 2007 - JFE

Circular Plots: Slope Correction
To adjust the radius (on the slope) to always measure a fixed area on the horizontally projected slope we use the equation: From Trig:

Circular Plots: Slope Correction		
Slope Percent	Correction Factor	Generalized corrections when
$\begin{array}{r}\text { 0-9 } \\ \hline 10-17 \\ \hline\end{array}$	1.00 101 100	adjusting for slope.
$\begin{array}{r}10-17 \\ \hline \quad 18-22 \\ \hline\end{array}$	1.02	
($\begin{array}{r}23-26 \\ \hline 27-30 \\ \hline\end{array}$	1.03 1.04	Example:
- $\begin{array}{r}\text { 31-33 } \\ \hline 34-36\end{array}$	$\stackrel{1.05}{1.06}$	
$\begin{array}{r}34-36 \\ \hline 37-39 \\ \hline\end{array}$	${ }^{1.06}$	1/10 acre plot on 35% slope:
$\begin{array}{r}40-42 \\ \hline \\ \hline\end{array}$	$\stackrel{1.08}{1.09}$	
- $46-47$	1.10 1.11	No slope radius $=37.2$ fe
-50-51	1.12	
54-55	${ }_{1}^{1.14}$	
$\begin{array}{r}\text { 56-57 } \\ \hline \text { 58-59 } \\ \hline\end{array}$	${ }^{1.15}$	- 372 feet (prpendicular to slope)
-60-61	1.17	= 37.2 feet (parallel to slope) $=$
		$37.2 * 1.06=39.4 \text { feet }$

Fixed Area Plots: Stand Boundaries
What issues do edge plots cause?

- Plots for which the plot center is outside the boundary will not be
meanured. So, trees close to the boundary are less likely to be
sampled and are under-represented.
• Portions of our plots may land outside the population. If we count
such plots as being full-sized, we bias our statistics.
Why might the edge trees differ from the central trees?
and

Edge trees can exhibit:

- Less competition
- More wind impacts

But when cruised tracts are narrow and long - i.e. more likely to have edge plots there are several methods that can be used
Fixed Area Plots: Stand Boundaries
Solution 2: Move plot so
it falls within boundary
Worst Method!
•Edge trees will be
under sampled
•Can lead to significant
bias if stand has lots of
edges!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

