
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Log Volumes: Geometric Solids		
$\text { TOP } \begin{aligned} & \text { PARABOLOID } \\ & \text { ORCONE } \end{aligned}$		
		Logs are not perfect cylinders!
UPPERLOGS	FRUSTUM OF PARABOLOID	Logs taper from one end to another
		Truncated sections of a tree can be approximated as geometric shapes:
${ }_{\text {butr }}$	(${ }_{\text {FRUSTUM OF }}^{\text {NELLID }}$	- Cone
Stump + .-...--		- Neiloid
where $B_{1 / 2}=$ cross-sectional area at \log midpoint $B=$ cross-sectional area at large end of \log $b=$ cross-sectional area at small end of \log $L=$ log length		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$B=$ cross-sectional area at large end of log
$b=$ cross-sectional area at small end of log
$L=\log$
$L=\log$ length
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Log Volumes: Geometric Solids		
Geometric Solid	Equation for Volume V (cubic units) ${ }^{a}$	Equation Number
Cylinder	$V=A_{b} h$	(6-1)
Paraboloid	$V=\frac{1}{2}\left(A_{b} h\right)$	(6-2)
Cone	$V=\frac{1}{3}\left(A_{b} h\right)$	(6-3)
Neiloid	$V=\frac{1}{4}\left(A_{b} h\right)$	(6-4)
Paraboloid frustum	$\begin{aligned} & V=\frac{h}{2}\left(A_{b}+A_{u}\right) \quad \text { (Smalian's formula) } \\ & V=A_{m} h \quad \text { (Huber's formula) } \end{aligned}$	$\begin{aligned} & (6-5) \\ & (6-6) \end{aligned}$
Cone frustum	$V=\frac{h}{3}\left(A_{b}+\sqrt{A_{b} A_{u}}+A_{u}\right)$	(6-7)
Neiloid frustum	$V=\frac{h}{4}\left(A_{b}+\sqrt[3]{A_{b}^{2} A_{u}}+\sqrt[3]{A_{b} A_{u}^{2}}+A_{u}\right)$	(6-8)
Neiloid, cone, or paraboloid frustum	$V=\frac{h}{6}\left(A_{b}+4 A_{m}+A_{u}\right) \quad$ (Newton's formula)	(6-9)
${ }^{a} A_{b}$, cross-sectional area at base; A_{m}, cross-sectional area at middle; A_{u}, cross-sectional area at upper end; h, height or length.		

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

