
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Point Sampling Inventories: Concept
In point inventories, trees are sampled based on their size and not by how often they occur.
Points are located as part of a cruise and a fixed angle tool is used to look at the tree's DBH to determine whether a tree is in or out of the plot.
Notes:
- The smaller the angle, more stems will be included
- Larger trees are more likely to be included in the cruise
- No need to set up plot corners: fast cruising method

\qquad
\qquad
\qquad
\qquad
\qquad
The smaller the angle, more stems will be included
Larger trees are more likely to be included in the cruise
No need to set up plot corners: fast cruising method
\qquad
\qquad

Point Sampling Inventories: Concept

In fixed area plots it was easy to scale the plot measure to an acre measure i.e. multiply the values by the reciprocal of the plot size:
e.g., For $10^{\text {th }}$ acre plot: trees in plot $\times 10=$ trees per acre
\qquad
\qquad
\qquad
\qquad
This multiplication (or expansion factor) is called the Basal Area Factor (BAF), where \# of trees X BAF = BA per acre. \qquad
\qquad

Point Sampling Inventories: Application

Step 2. Plot Radius Factor
The Plot Radius Factor (PRF) allows us to calculate for a given BAF the maximum distance (or limiting distance) that a tree can be from the point to be IN.
DBH (inches) \times PRF $=$ Maximum Distance from Point (feet)

BAF (ft $2 /$ /acre)	Angle size $(\mathbf{m m})$	Angle size (diopters)	Ratio (DBH/plot radius)	Plot Radius Factor (PRF)
$\mathbf{5}$	73.66	2.14	$1 / 46.7$	3.899
$\mathbf{1 0}$	104.18	3.3	$1 / 33.0$	2.750
$\mathbf{1 5}$	127.59	3.71	$1 / 26.9$	2.245
$\mathbf{2 0}$	147.34	4.29	$1 / 23.3$	1.944
$\mathbf{2 5}$	164.73	4.79	$1 / 20.9$	1.739
$\mathbf{3 0}$	180.46	5.25	$1 / 19.0$	1.588
$\mathbf{3 5}$	194.92	5.67	$1 / 17.6$	1.470
$\mathbf{4 0}$	20.38	6.07	$1 / 16.5$	1.375
$\mathbf{5 0}$	232.99	6.79	$1 / 14.8$	1.230
$\mathbf{6 0}$	255.23	7.44	$1 / 13.5$	1.123

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

