
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DF6homarle anm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tree Age: Measurement with Tree Cores

Using Increment Bores:

- A hollow tube with a cutting bit is screwed into the tree
- Inserting the cutting bit forces a section of the tree into the hollow tube
- The contents of the hollow tube can then be extracted and analyzed

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tree Age: How Large a Core Do You Need?

Main Point 3: The length of a core taken depends on what period of tree growth you are interested in

Tree Age $\boldsymbol{\rightarrow}$ Full Core Length
Rate of Growth say for Past 5 or 10 Years $\boldsymbol{\rightarrow}$ Maybe only $1 / 2$ core

Tree Core Applications: Dendrochronology

Figure 6. Cross-dating of live trees with dead or fossil trees allows the construction of long reference chronologies. (From Schweingruber 1988.) Scnwelngruber's 1988 Iree kings: basics and Appications of Lenarochronology. U . Keldel, Dorarecht, Ine Netherlands, 276 pp

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Site Density Measures: CCF Example			
The following data was collected from $51 / 10$ acre plots ($\mathrm{a}=0.5$)			
dbh	n_{i}	dbhi* ${ }^{\text {* }}$	$\mathrm{dbh}^{2} \mathrm{n}_{\mathrm{i}}$
4	50	200	800
5	45	225	1125
6	43	258	1548
7	20	140	980
8	17	136	1088
9	11	99	891
10	5	50	500
Total	191	1108	6932

\qquad
\qquad
The following data was collected from $51 / 10$ acre plots ($a=0.5$)

Site Density Measures: The Stand Density Index

Stand Density Index (SDI):

- Developed by Reineke in 1933
- Uses diameter, D_{q}, of tree with the average BA
(quadratic mean diameter) and number of trees per unit area (N)
- For each species different fully stocked even-aged
stands with the same D_{q} have \sim maximum N

To calculate D_{q} :

- For each DBH calculate basal area
- Calculate mean basal area
- Re-calculate what DBH would give
that mean basal area
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

