

TO DE LONG THREE TAXABLE IN	CALCELER AND A REAL FOR A							
Growth and Yiel	Growth and Vield: Overview							
eremana men								
The state								
	Current annual increment: growth within the							
	past year							
	Periodic annual Increment: average growth of							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a series of years (5 or 10)							
The second second	Mean annual increment: Current (cumulative)							
	size divided by the age							
Fort Valley Exp. Forest, Ariz. mature group of posderose pine in wirgin stand hearly all trees contain one or more surface-ale them muse up to (3 inches.	dept. 1944 O. A. Perreon , ample juke 5. Perreon ar logs and diam-							

Stand Growth: Overview

When considering ecosystems we use the following terms:

• Gross primary productivity (GPP) – total amount of CO2 fixed by a plant (or stand of plants) due to photosynthesis

Net primary productivity (NPP) – net amount of CO2 fixed by the plant after respiration is subtracted from GPP

NPP = GPP - R

 Net ecosystem productivity (NEP) – the net primary production after all respiration from plants, hetertophs, and decomposes are included

 $NEP = GPP - (R_p + R_h + R_d)$

NEP is of great interest to people trying to understand the global carbon budget

re group of ponderosa pime in wirgin stand, sample plot 56. all trees contain one or more surface-clear logs and diam-

Allometrics: What is it?
Most people do not have access to the equipment or personnel to dig up roots. Therefore we use tree allometry.
Tree allometry is the development of quantitative relationships between "easy to measure" properties of tree growth and the "difficult to measure" metric you really need.
Easy to Measure: DBH, Heights, Leaf Area Index
Difficult to Measure: Total standing tree volume, total carbon content, root carbon
The fully first first state of the first state of t

Allometrics: DBH only Relationships									
Many types of allometric relationships exist. The simplest type									
all have equations of the form:									
and the second									
$M = aD^b$									
W = ab									
Where,									
M = oven-fry weight of the biomass component (kg), D = DBH									
(cm), and a and b are relationship specific parameters									
You already know 1 allometric eqn: BA = 0.005454^DBH ² !!!									
Alder, speckled (Alnus rugosa (DuRoi) Spreng.)									
AB: 0.2612 2.2087 3-9 * 30 n/a n/a calc n/a comp Maine Young et al., 1980									
ST: 0.0456 2.5847 3-8 30 0.934 n/a log n/a comp Maine Ribe, 1973									
EL: 0.0461 1.2643 3-8 30 0.667 n/a in a/a comp Maine Foung et al., 1980									
0.0479 1.2274 3-9 30 0.802 n/a ln n/a comp Maine Young et al., 1980									
BR: 0.0620 1.5184 3-8 30 0.776 n/a log n/a comp Maine Ribe, 1973									
0.0617 1.5201 3-9 " 30 0.879 n/a ln n/a comp Maine Young et al., 1980									
mature group of ponderosa pine in wirgin stand, sample plot So.									

30	14. M		12.01	-75-5K-1	100		1.000	N' - 68	10.1			
100	C. N. M. C.		ALC: NAMES	195.15.5.00		Land Ca	h					
	All	lome	etric	s: DE	ЗH	on	lv R	ela	tior	nshii	ps	
86				60.5	83	2. 6.	. 1	源于	.5			
86							1.40	1 300				1 4 11
No.	AI	eviev	w of I	nundre	eds	s of t	ree	allor	netr	ic rel	ations	was conducted by:
	Te	r-Mei	kaelia	an an	dΚ	orsu	ıkhin	(19	97):			
- 23		255	1 20	Buch	3.		30.1	198	123			
1		i Sei	La.F.	100		- 11 F	38	190				
20	M	a	b	D range	N	R ²	SEE	Mtd	C.f.	SI	Region	Author
0	Alder	rad (Ab	nuc nubro	Bong)								
1	FL:	0.0100	1.9398	3-63	53	0.929	0.444	ln	1.104	comp	Oregon.	Washington Snell and Little 1983 b
10	BR:	0.0069	2.6516	3-63	53	0.936	0.574	In	1.179	comp	Oregon,	Washington Snell and Little, 1983 b
3	101121			10.51 - 0.02			5007 MR	1.0000				
15	8 5	1000		185		30.0						
	Alder	r, speckled	i (Alnus r	ugosa (DuR	oi) Sj	oreng.)						
	AB:	0.2612	2.2087	39 *	30	n/a	n/a	calc	n/a	comp	Maine	Young et al., 1980
1	ST:	0.0456	2.5847	3-8	30	0.934	n/a	log	n/a	comp	Maine	Ribe, 1973
14	F1 .	0.0463	2.5755	39*	30	0.967	n/a	In	л/а	comp	Maine	Young et al., 1980
Я.	FL:	0.0461	1.2043	3-8	30	0.802	n/a n/a	In	n/a n/a	comp	Maine	Young et al. 1980
5	BR:	0.0620	1.5184	3-8	30	0.776	n/a	log	n/a	comp	Maine	Ribe, 1973
890		0.0617	1.5201	3-9 *	30	0.879	n/a	In	n/a	comp	Maine	Young et al., 1980
発,	10 E	0 1455	meret	11	Ν.		10000	ener	1.67			
1	14-1		1. 1. 1.	10	3.3		1992					
,	71	ort Valley	Exp. Fores	A. APIR.		Sept. 194	4 0.	A. 7003	N800.			
learl	y all t	rees coute	lerosa pine ain one or	nore surface	-clea	r logs an	d diam-					
Lans	100.020	10 20 12 9	nahas.					and the second second				

88 A.V.	Allometr	ics:	Brai	nch	Alloi	meti	rics					
686	1	14	aste.	2.5			5					
and the	A study by predict brain	y Mor anch a	nseru and c	id an rown	d Ma area	rshal , leat	l (19 f mas	99) de s, and	velop bran	ed e ch w	quat cod i	ions to nass:
のであるの	Table 3. The b coeff branch leaf area (m²) fir, ponderosa pine, a	icients in t dry bran and western	he full all ch wood r a white pi	lometric e nass (kg), ne.	quation Y and dry n	$= b_0 X_1^{b_1} X_2^{b_2}$ eedle mas	$^{2}X_{3}^{b_{1}}X_{4}^{b_{4}}$ is (kg) for	and the reduc sample bran	ed allome ches from	tric equati each of th	ion Y = b hree spec	$_{0}X_{1}^{b_{1}}X_{4}^{b_{4}}$ for ies: Douglas-
1.15	Dependent variable	Sample	Coefficient in $Y = b_0 X_1^{b_1} X_2^{b_2} X_3^{b_3} X_4^{b_4}$				Explained variation	Coeffici $Y = b_0 X$	ent in ${}_{1}^{b_1}X_4^{b_4}$	${}_{1}^{a_1}X_4^{b_4}$		
*	and species Branch leaf area Douglas-fir Ponderosa pine	176 175	0.1171 0.2937	1.8566 0.7147	<i>b</i> ₂ 0.9533	0.4688 0.4090	0.1946	(%) 82 83	0.1216 0.1026	b1 1.9179 1.6046	<i>b</i> ₄	(%) 80 73
STATES	When the they are c based on r	volur alled	ne eo singl than	quatio le-en	ons a try eo variat	re ba quatio	ased ons. I	on one Multiple	e vari e-ent	able ry eq	(e.g. Juatio	, DBH) ons are
を読む	Ponderosa pine Western white pine	176 168	0.0872	0.8956	0.8226	0.4765		84 84	0.0300	1.6509		73 82
	Note: Day benesh ma	ad many day	a second to a be	L								

Vo	Volume: Form Class Tables								
ALC: Y	1 4 8		Con Sel	Spech					
Co	mbinin	g ou	ir kno Etroo	owled	dge of le	og volumes with allometrics allows			
	e creati	on o		Volu		weight tables.			
Stand	ard Volume Ta	ble, Inter Volur	national 1 ne by 16.ft	4in Rule,	Form Class 80	Form class equations:			
	DBH (In) 10 12 14 16 18 20 22 22 24 24 26 28 30 30 32 34 36 36 36 36	1 39 59 83 112 144 181 221 266 316 367 424 486 550 620 633 770	2 63 96 141 190 248 314 387 469 558 654 654 870 989 91121 1256 1403	3 80 127 186 266 336 427 538 644 767 904 767 904 1213 1383 1571 1772 1977	4 146 216 305 402 512 513 152 638 773 931 1096 1272 1480 1691 1922 2167 2432	Provides an estimate of volume from DBH, height, and tree form regardless of species Disadvantages: - Forms vary within and across species - Rough estimates of form class - Variations in taper, especially upper stem taper, can lead to large volume errors			
mature gr learly all	fort Valley Exp roup of pendero trees contain	. Forest, sa pine i one or mo	Ariz. a virgin st re surface-	Sept. and, sample clear logi	1944 G. A. to plot Só. s and diam-	Pearson			

Forest Growth Model Systems: FVS Output										
Typical FVS Output Summary:										
SUMMARY S START OF SIMULATION PERIOD	ATISTICS (PER ACRE OR STAND BASED ON TOTAL STAND AREA) ROMOVALS AFTER TREATMENT GROWTH THIS PERIOD MAT									
NO OF TOP TOTA YEAR AGE TREES BA SDI CCF HT QMO CU F QMO CU F QMO CU F QMO CU F 2007 100 473 115 248 120 49 6.7 233 2017 110 442 134 223 134 52 7.2 270	NERCH MERCH NO OF TOTAL MERCH MERCH TOP RES PERIOD ACCER MORTH MERCH MERCH 0.0 FF 00 FF THESC OF FC UPT 00 FF 0	R SS P ZT								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
	What barraned batwaan 2047 and 205	70								
	what happened between 2047 and 205	1 !								

FVS: A Walkthrough Example

One data is entered, the simulation stand is selected. The default growth period in FVS in 100 years at 10 year intervals. Pressing the "Select Management" button shows you some options.

Forest Growth Model Systems: Biome BGC
Biome BGC is a process model that can predict fluxes of carbon, energy, and water in the vegetation and soil
Advantages: Accounts for a wide range of physical and biological processes. As such can be applied to any species in any location; and adaptable to climate changes
Disadvantages: Required measurements more difficult to obtain. Although models "How" the plants grow – does not directly provide measures useful to forest managers – such as available timber for harvest, amount lost in fire, etc
Biome BGC will be covered in detail in FOR 330
Fort Valley May, Porest, Aris. Sept. 1944 5. A. Pezzoo matree group of proderous pines is rights stand, assayle plot 30. entry all trees extending one or more information-lawer loss and lame-

	Stand Growth: Stand Table Prediction										
	Growth projections according to DBH class:										
		- Develop	stand table b								
233	69 (19 (19 (19 (19 (19 (19 (19 (19 (19 (1	- Develop		y DBIT Class							
	A C	🖉 - Determir	e past growt	n via corers or pa	ist						
10.0		inventories	6								
	1. 1. 1.	1 24 4 6									
1		A CARL									
1	DBH Class (in)	Present Stand	Expected	Expected Survival	10-year DBH						
21		(stem count)	Mortality (%)	(stems)	Growth (in)						
1	6	522	40	313	2.2						
all	8	352	35	229	2.3						
J.	10	179	25	134	2.4						
	12	88	20	70	2.2						
	14	40	15	34	2.4						
2	16	11	10	10	2.6						
肥制	18	10	10	9	2.1						
-	20+	8	20	6	1.8						
matur	Total	1210		805							
learly	an annue un th 43 tanhas										

	Stand Growth: Stand Table Prediction										
	Growth projections according to DBH class:										
	 Apply past diameter growths to current stand table and estimate mortality and ingrowth Periodic stand growth = Volume of future stand - Volume of present stand 										
1	i la di	A MAR									
L	DBH Class (in)	Present Stand (stem count)	Expected Mortality (%)	Expected Survival (stems)	10-year DBH Growth (in)						
1	6	522	40	313	2.2						
all	8	352	35	229	2.3						
N.	10	179	25	134	2.4						
	12	88	20	70	2.2						
	14	40	15	34	2.4						
Re	16	11	10	10	2.6						
聖影	18	10	10	9	2.1						
-	20+	8	20	6	1.8						
matus	Total	1210		805							

		128.8 48 13 13						
	Stand Growth: Producing Future Stand Tables							
201								
	Need to account for "upward movement" of							
		trees in	to higher DBI	H brackets				
23								
1	AL 24. A	Growth	-index Ratio =	= Diameter Grow	th / DBH			
23	3 P. S.	increme	ent = 22/2 =	1 10				
		A State State						
13		7						
Sec.	DBH Class (in)	Present Stand	Expected	Expected Survival	10-year DBH			
R		(stem count)		(stems)	Growth (in)			
	6	522	40	313	2.2			
1	8	352	35	229	2.5			
wild.	10	179	25	134	2.4			
	12	88	20	70	2.2			
What This Means: 100% of the trees move up 1 DBH bracket ar 10% move up two DBH brackets!								
							20+	8
Total 1210 805								
Total 1210 805								

Stand Growth: Producing Future Stand Tables								
Based off stem count and DBH the current and future volumes can be predicted								
DBH Class Present (in) Stand (stem		Growth-index Ratio (g/i)	# DBH brackets stems moving by:			Future Stem		
6	313	1.10	0	282	31	0		
8	229	1.15	0	195	34	282		
10	134	1.20	0	107	27	226		
12	70	1.10	0	63	7	141		
14	34	1.20	0	27	7	90		
16	10	1.30	0	7	3	34		
10	9	1.05	0	8	1	14		
10	6	0.90	1	5	0	12		
20	0			0	0	6		
20 22	0		0	0	0	0		

		じだん おやくしけつ							
Stand Growth: Stand Table Prediction									
	Limitations:								
		Ennia	0110.						
	 Method is limited when mortality is high 								
		Bost s	uited to un-e	ven aged and low	v densitv				
-	2 A .	stands		ven agea ana iov	vachony				
	4 22 3	Stands							
		7							
·	DBH Class (in)	Present Stand	Expected	Expected Survival	10-year DBH				
8	. ,	(stem count)	Mortality (%)	(stems)	Growth (in)				
	6	522	40	313	2.2				
all	8	352	35	229	2.3				
Jac .	10	179	25	134	2.4				
	12	88	20	70	2.2				
	14	40	15	34	2.4				
2	16	11	10	10	2.6				
题	18	10	10	9	2.1				
	20+	8	20	6	1.8				
matur	Total	1210		805					
learly .	AFTY man yours to 13 toobar.								

