

$\qquad$
$\qquad$


Systematic Sampling: Population Types
The degree to which a sample is "representative" of the population is dependent on how the objects in the population are arranged within the frame.
$\qquad$


## Systematic Sampling: Populations

The probability of occurrence in a random population at any location is equal. In random populations systematic (and random) samples will be representative.

In non-random populations systematic samples will tend to be more representative than random samples as the sample size increases.

$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Systematic Sampling: Populations

Ordered populations exhibit some form of rank, such as age.
Periodic populations follow undulates patterns like a sine or cosine wave. Periodic populations occur naturally in forestry due to aspect, slope position, and disturbances.

Auto correlated populations occur when individuals are more likely to be similar to their closer neighbors than those further away AND when a relationship can be inferred as a function of the position. In these populations, the value of any component can be inferred from the value of one that occurred earlier in the sequence.

Stratified populations are a type of auto correlated population, which can occur in forests due to water availability, topography, disturbance, and management history.

Systematic Sampling: What is it?
Consider the following plot list:
Consider the following plot list:
$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$
We call this the "basic" sampling frame. If we decide that we will measure every $L^{\text {th }}$ plot, then we have a " 1 in L systematic sample".

$\qquad$
$\qquad$
$\qquad$
$\qquad$

Systematic Sampling: What is it

If $L=5$ then we would collect the following sets of data:

$$
\{1,6,11\} \quad\{2,7,12\} \quad\{3,8,13\} \quad\{4,9,14\} \quad\{5,10,15\}
$$

Typically only one of these subsets are selected for sampling.
$\qquad$ This means the subset is a sample. Each of these samples contains $n=3$ elements. $\qquad$
Sampling intensity $=\mathrm{n} / \mathrm{N}=3 / 15=20 \%=1 / \mathrm{L}$

$\qquad$
$\qquad$
$\qquad$

## Systematic Sampling: Scenario 1

## Each subset is a cluster and only one clust <br> Each subset is a cluster and only one cluster is selected

$\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$
Cluster 1:
Cluster 2:
Cluster 3:
Cluster 4:
Cluster 5
1, 6, 2,

11
12
13

In this scenario each cluster spans the range of data (i.e. not compact). The samples are interlocking. No sub-sampling each cluster will likely be representative. $\qquad$



## Systematic Sampling: Scenario 2

| Effectively 2 stage cluster sampling: <br> Each cluster is compact and contains $\mathrm{L}=5$ elements. A subsample is selected from EACH cluster ( $\mathrm{n}=1$ ). In this case the sample is likely to be representative while the cluster is not. |
| :---: |
|  |  |
|  |  |

## 

Systematic Sampling: Population Parameters
4. Since systematic sampling is a special case of cluster sampling, the mean is the same.

Under Scenario 1 if we use the simple random sample equation for variance of the mean the answer will be larger than that we would get if we had a simple random sample.

$$
V(\bar{y})=\frac{1}{M} \sum_{i}^{M}\left(\mu_{i}-\mu_{o}\right)^{2}
$$

Under Scenario 2 we must use the following equation:

$V(\bar{y})=\frac{1}{M^{2}} \sum_{i}^{M} \sigma^{2}$


## 

Systematic Sampling: Effects of Trends
 If a linear trend is present (with no random component) the variance of the mean of Scenario 1 is " $\mathrm{n} \times$ greater" than Scenario 2:

$$
V(\bar{y})_{\text {Scen } 2}=\frac{1}{n} V(\bar{y})_{\text {Scen } 1}
$$

In other words, "the efficiency of Scenario 2 is $\mathrm{n} \times$ greater than Scenario 1",

If the trend is a known relationship, it can be removed to produce a new population.


## 

Systematic Sampling: Statistics
 Scenario 1: The sample total, mean, and variance are based on all values within a single cluster.

Scenario 2: The sample consists of 1 elements from each of the M clusters. Therefore, sample size $\mathrm{n}=\mathrm{M}$.

By either scenario, the variance of the total and the variance of the mean can not be calculated (due to divide by 0 ). $\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Systematic Random Sampling: How to do it$123456$ |  |
| :---: | :---: |
|  |  |
|  | By acreage: |
| co |  |
| 4 | 1. Divide the total Area ( 100 acres) by the number of samples $(20)=5$ |
|  |  |
| faypara |  |
|  | 2. This 5 is the "area" represented by each point |
| - 4 - |  |
| - 40 | 3. For square plots, the spacing between plots is then the square root of the acreage: |
| 24139 |  |
| ${ }^{2}{ }^{2}$ |  |
| - ${ }^{3}$ |  |
| 4 |  |
| A $0^{8}$ | $=\sqrt{ }(43,560 * 5)=\sim 467$ feet |
|  |  |
| Wrameses |  |
| 264 |  |



## 

Distance Between Samples: Useful Tools

Once we have determined how many samples, we then have to decide how close to each other they can be. $\qquad$

Tools exist that help us determine how far apart samples have to be to be considered independent. $\qquad$
The main tool is called semi-variograms.
To understand how they work we first must understand
$\qquad$ covariance, correlations, and autocorrelation.

$\qquad$
$\qquad$
$\qquad$

Distance Between Samples: Covariance

In forestry we are often interested to know how one variable
changes with another. e.g., How does tree volume vary with site
index? How does tree height vary with stand age? $\qquad$
2. $\qquad$
Covariance is defined by:
$\operatorname{Cov}[X, Y]=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
IRMBEIII
Covariance can be + or -

$\qquad$
$\qquad$
$\qquad$
$\qquad$

## 

Distance Between Samples: Correlation
 $\qquad$
We simplify covariance by making the values go between -1 and +1 , by dividing COV $[X, Y]$ by the product of the standard deviations: $\qquad$



$\rho$ is called the Pearson Correlation Coefficient ( r ) $\qquad$
In Excel use the function =PEARSON (data1, data2).
Values near 1 indicate that the 2 variables are
associated with each other; but values near 0 does not mean the variables are independent (just that they are not linearly related).


IMPORTANT NOTE: This is only a measure of the strength of linear association between the two variables.

## Distance Between Samples: Auto correlation


Spatial auto correlation is the correlation of a variable with itself through space.

If we imagine a forest where the location, age,
3pecies, and quality of the trees grew randomly over
the unit: this would be an example of a stand
exhibiting no spatial autocorrelation.
This never occurs in a managed site and usually trees of similar characteristics (volume, health, species, etc) grow near each other.

What does this mean? $\qquad$
FADCal
Problem: If our plots are too close together we will likely measure essentially the same measurements (as they will be too alike) - these measures will not be independent.

## 

Distance Between Samples: Semi-variograms

To overcome this problem we use semi-variograms to tell us how
far apart to place plots so they are independent. $\qquad$
$\gamma(h)=\frac{1}{2 N(h)} \sum_{\alpha=1}^{N(h)}\left(x_{(\alpha+h)}-x_{\alpha}\right)^{2}$ $\qquad$
$N$ is number of pairs: For every $n$ observations there are $n^{*}(n-1) / 2$ pairs... clearly use a computer package to do this... $\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Distance Between Samples: MAUP
Data can be aggregated in different ways

| 10 | 15 | 5 | Mean of the means |  |  | 10 | 10 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 10 | 15 | 6.6 | 11.6 | 6.6 | 5 | 12.5 |  |
| 5 | 10 | 5 |  |  |  |  | 10 | 5 |
| $\mathrm{n}=9 \mathrm{Mean}=8.88$ |  |  | $\mathrm{n}=3$ Mean $=8.26$ |  |  | $\mathrm{n}=6$ Mean $=10.83$ |  |  |

Importantly, the mean of all samples does not necessarily equal the mean of the means.

It is very important that data is collected at scales that capture the variability within the data. $\qquad$
$\qquad$

## 

Cruising Designs: Strip Cruising
80 Wh
In strip cruising, parallel strips (long thin rectangular plots) are used where the spacing between the steps are constant

## Advantages:

Continuous sample
Travel time is low (as compared to visiting randomly located plots)
Strips have fewer boundary trees
Disadvantages:
Errors easily introduced if correct strip width is not maintained
Need at least 2 people
Brush, windfalls, and surface debris are more of a hazard (as cruisers must cruise along a fixed compass bearing)

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Cruising Designs: Line-Plot Cruising

路 $\qquad$
In line-plot cruising the plots are equally separated on each line, with equal spacing between each line - i.e. a grid

## Advantages:

$\qquad$
Can be cruised by 1 person
Cruisers less hindered by brush and windfall
The "pause" at plot center enables better checking of borderline trees
Quick data summaries can be obtained per plot or by stand / condition classes.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Cruising Designs: Line-Plot Cruising
In line-plot cruising a systematic tally of timber is taken from plots laid out on a grid pattern


Cruising Designs: Fixed Area Plots
Notes:

- Circular 1/10 ac plots commonly

216 CHAPTER 10: INVENTORIES with sample strips used for timber tallies

- 1/25 ac for pulpwood trees


Cruising Designs: Plot Spacing

FIGURE $10-2$
Diagrammatic
Diagrammatic plan for a 10 percent systematic line-plot cruise utllizing \%-acre circular
sampling units.


Cruising Designs: Fixed Area Plots
Mon on
Advantages of Strip (over Plot) Cruising:

- Sampling is continuous
- Low travel time between plots
- Strips have fewer borderline trees than
plot cruising
- Need two people to cruise - so safer in remote or dangerous regions

$\qquad$

$\qquad$

Permanent Plots: CFI and SBI

|  |  | Permanent plots (that are re-measured) provide <br> statistically strong ways to evaluate changes |
| :--- | :--- | :--- |
| 2 separate sets of random samples in a stand will have |  |  |
| higher measurement errors that measuring the same |  |  |
| plots twice. |  |  |
| Measuring changes in the same place allows actual |  |  |
| changes to be recorded |  |  |



$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Systematic Random Sampling: What do we do?

$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Rare Populations: What is Rare in Forestry |  |
| :--- | :--- |
|  | Rare populations in forestry can include downed trees <br> with high salvage value and standing high value trees |
|  | Examples of high value timber species include western <br> red cedar, black walnut, mahogany. However, non- <br> timber forest products can also be high in value, like |
| huckleberries, sumac, and mushrooms. |  |
|  | Applications can include trees for use as specialty |
| forest products (e.g., telephone poles and veneer), food |  |
| services (e.g., mushrooms and maple syrup), and |  |
| many many more. |  |
| Many of these sampling approaches are also applied in |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$



Approach covers very large areas but is inefficient when considering live trees.

When used for rare populations, auto correlation issues are minimized as samples are typically very far apart.

FGURE 10-1
 the strip. If measuring downed logs,
 most samples include if center Distanco betreen
Strip centerives


Source: Avery and Burkhart Chapter 10
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
${ }^{2}$ Rare Populations: Use Systematic Strip Cruising

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


