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BIOMETRICS 39, 965-976 
December 1983 

Unbiased Estimation in Line-Intercept Sampling 

Lee Kaiser' 

Department of Mathematics, University of Auckland, 
Auckland, New Zealand 

SUMMARY 

A theory for unbiased estimation of the total of arbitrary particle characteristics in line-intercept 
sampling, for transects of fixed and of random length, is presented. This theory unifies present line- 
intercept sampling results. Examples are given and variance estimation is discussed. 

1. Introduction and Literature Review 

Line-intercept sampling (LIS) is a method of sampling particles in a region whereby, roughly, 
a particle is sampled if a chosen line segment, called a 'transect', intersects the particle. It has 
the advantage over 'quadrat sampling' in that there is no need to delineate the quadrats and 
determine which objects are in each quadrat. Examples of the economics of LIS versus 
quadrat sampling can be found in Canfield (1941), Bauer (1943), Warren and Olsen (1964), 
and Bailey (1970). The particles may represent plants, shrubs, tree crowns, nearly stationary 
animals, animal dens or signs, roads, logs, forest debris, particles on a microscope slide, 
particles in a plane section of a rock or metal sample, etc. 

In early biological applications, sampling with a transect appears to have been a purposive- 
sampling technique for studying how vegetation varies with changing environment, with the 
transect running perpendicular to the zonation (Weaver and Clements, 1929). In the study of 
range vegetation, Canfield (1941) incorporated random placement of the transect and, by 
taking the proportion of the sampled transect intercepted by the vegetation, obtained an 
unbiased estimator of coverage that is, the ratio of the area covered by the vegetation to the 
area of the region of interest. However, he did not prove the unbiasedness of this estimator. 
Canfield called this method the 'line-interception method'. He also discussed such design 
questions as how many lines of what length are required and whether or not the area of 
interest should be stratified. Bauer (1943) compared transect sampling to quadrat sampling 
in an area of dense chapparal vegetation and in a laboratory experiment. He concluded that 
'. . . transect sampling deserves much wider use. . .'. McIntyre (1953) investigated the 
possibility of using data on intercept lengths in order to estimate not only coverage, but also 
density-that is, the ratio of the number of particles to the area of the region of interest. He 
was able to do this for populations which consisted of particles that were all magnifications 
of a known shape. Lucas and Seber (1977) presented and proved the unbiasedness of 
estimators of particle density and coverage for arbitrarily shaped and located particles when 
the transect is randomly placed. Their estimator of coverage is the same as that of Canfield 
(1941). Eberhardt (1978) reviewed three transect methods for use in ecological sampling: LIS, 
and two methods, 'line-transect sampling' and 'strip-transect sampling', in which the particles 
are points and the probability of observing a particle is a function of its perpendicular distance 
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to the transect. He also gave an example of the use of LIS in the estimation of the number of 
den sites in a large prairie-dog town. De Vries (1979b) showed how LIS can be used to 
estimate the density of animals with 'elliptical flushing regions', and obtained a different 
estimator from that obtained by Burnham (1979) using line-transect sampling. Seber and 
Pemberton (1979) investigated the use of LIS for estimating aspects of plant cuticles in rumen 
and fecal samples on microscope slides. 

Line-intercept sampling was introduced in forestry by Warren and Olsen (1964), who 
coined the term 'line-intersect sampling' which is used to describe the technique in the forestry 
literature, as a means to estimate rapidly the volume of logging waste produced during 
clearfelling operations. One thing that distinguishes LIS in forestry applications is that the 
particles in the region are generally assumed to be needles, usually to represent log axes. Van 
Wagner (1968) proved the unbiasedness of Warren and Olsen's estimator under certain 
assumptions, one of which is that the logs are placed and oriented uniformly at random in the 
area. Under similar assumptions, de Vries (1973) obtained unbiased estimators of the total of 
arbitrary log characteristics, and considered variances and variance estimation. Again under 
the assumption of random particle placement, de Vries and Van Eijnsbergen (1973) presented 
estimators of the total of arbitrary particle characteristics allowing arbitrary particle shapes, 
and compared these for the case in which the particles are circular arcs. De Vries (1979) gave 
a good review of LIS with an emphasis on forestry applications and made suggestions for its 
use in other fields. This paper contains further references on LIS in the forestry literature. 

Related problems may be found in the areas of petrography, quantitative metallography, 
and stereology, on which there is a vast literature. For references see De Hoff and Rhines 
(1968) and Davy and Miles (1977). A major problem in these areas is that of estimating 
aggregate properties of particles, usually assumed opaque, in an opaque three-dimensional 
medium. The usual sampling scheme is to examine a random plane section of the medium 
and to measure relevant aspects of the intersected particles. However, rather than measure all 
the particles in the plane section, a second stage of sampling may be used at this point. In this 
stage the problem is identical to that in LIS. Transect sampling techniques have been 
proposed and these will be referenced in the following sections. 

The purpose of this paper is to state the problem of LIS in a sufficiently general form and 
to present sampling schemes and estimators which, when specialized to particular problems, 
will yield the unbiased estimators obtained by other investigators in this field. This is done in 
?2 and ?3 for transects of fixed length, and in ?5 for transects of random length. Variance 
estimation is discussed in ?4. 

2. A Fixed-Transect-Length Sampling Scheme and Unbiased Estimators 

Suppose that there is a planar region R of area A in which there are N fixed particles, 
P1, . . ., PN, of any shape, not necessarily convex, but where each particle is assumed to be a 
connected set of points (Buck, 1965, p. 29). A fixed characteristic xi and a variable yi, which 
can depend on the transect sampled, are defined on Pi, i = 1, . . ., N. We wish to estimate 
A, = Jxi/A. (All summations without limits indicated will refer to the sum from 1 to N). For 
example, xi may be the area of Pi, and yi the length of the intersection of Pi and the transect; 
or Pi may be a road of length xi, and yi the number of intersections which the transect makes 
with the road. 

Let some arbitrary direction in the plane be denoted by 0 = 0. Particles will be sampled in 
the following way. A point is chosen uniformly at random in R; that is, if B is any subset of 
R, then the probability that B contains the point is proportional to the area of B. This point 
is then the midpoint of a transect of fixed length L which has direction 0 generated according 
to an arbitrary distribution on [0, 77). The midpoint and 0 are chosen independently. In most 
applications the transect distribution will be either degenerate in a particular direction or 
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uniform on [0, 7); that is, 0 - U(O, 77). The particle Pi is said to be sampled, and xi and y are 
measured, if the transect completely intersects Pi. In order to handle partial intercepts we 
follow McIntyre (1953) and Lucas and Seber (1977) in choosing one end of the transect at 
random and sampling partially intercepted particles on this end, ignoring partial intercepts 
on the other end. 

Often, LIS results are derived by using a fixed transect and assuming that particles have 
been located and oriented on R uniformly at random. As this assumption usually will not 
hold in practice, it is desirable to see what results can be obtained by assuming, as is done in 
sampling theory, that the population is fixed and that randomness enters the problem only 
through the sampling scheme. Thus, in the present work, all probabilities and moments are 
calculated over the random placement of the transect for the fixed population. 

Let wi(O) be the maximum perpendicular distance between lines in the direction 
O E [0, 7T) tangential to Pi, and define the indicator random variable t1 to be 1 if Pi is sampled 
and 0 otherwise. 

Consider the particle Pi in Fig. 1. Given that the direction of the transect is 0, Pi is 
completely intercepted by the transect if the transect midpoint is within the unshaded region 
bounded by the broken lines. This region has area Lwi(0) - a,, where a1 is the area of Pi. If 
the midpoint of the transect is in either shaded region, then Pi is sampled with probability 4. 
The shaded regions have total area 2a1. Since all the regions under discussion are entirely 
within R, 

Lw1(0)-a. 2, 
E(t.I 0) = pr(t- = I I 0) = i(8 I I+ 12I) 

LwA(O) (2.1) 

and, taking the expectation over 0, 

E(t) =pr(t. = 1) = E{ wi (0A ) 

Lc1. 
-A, say. (2.2) 

Thus, the probability that Pi is sampled is proportional to a measure of the size of Pi. 

/~~~~~~ ~~~~ - - - - --. - - - - - \ 

-L/2 -I- L/2 - { 

i= w(e) 

Figure 1. An illustration of the formula pr(t,- = IjI 0) = Lw,(O)/A, with U I0, t,'=I U(O. w,"(0)). 
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For particles within a distance IL of the boundary of R, (2.1) will not hold for all 6. One 
way to make (2.1) hold when R is convex is to bring into R any portion of the transect which 
lies outside of R by continuing the transect a perpendicular distance d [> max{wi(O)) so that 
no particle can be intercepted twice by the same transect] away from the portion of the 
transect already in R. Figure 2 illustrates such transects where the portion outside of R is 
brought back on the right-hand side of the portion in R. It does not matter whether the 
portion outside of R is brought in always on the right of the portion of the transect in R, 
always on the left, or on a side chosen at random. For the transect illustrated by the dashed 
line the sampler might rather bring the small portion of the transect in on the left and incur 
a small bias in the estimator. An argument identical to that given for Pi in Fig. 1, applied to 
Pj in Fig. 2, shows that (2.1) holds in this case also. 

An important aspect of this sampling scheme is that given the direction, 0, of the transect 
and that tk = 1, the perpendicular distance U, say, between the left-hand tangent line to Pk 
(when facing in the direction 6) and the transect has a uniform distribution on (0, Wk (6)). To 
show this, we have, using the definition of conditional probability, 

pr{ UE(u,u+du),t 1 prUe(u u + du), t = O) (2.3) 
pr(tk = 116 )(23 

Consider the particle Pk in Fig. 1. Let z be the length of the intercept of Pk and a transect with 
U = u. Now, given 0, U will be in (u, u + du) and Pk will be sampled with probability I if the 
transect midpoint is in either of the shaded strips, which have total area 2zdu, or with 
probability 1 if the midpoint is in the unshaded strip which has area (L - z) du. Thus, 

(L - z) du + 1(2zdu) prt UE(u, u + du), tk = 116- A) 

Ldu 
Lu .(2.4) 
A 

Combining (2.1) and (2.4) with (2.3) shows that 
du 

pr{ UE(u, u+ du) I0, tk= I~ Wk(= 

!-a l-b-/ 

Figure 2. An illustration of a scheme for bringing into R any portion of the transect outside of R. Note 
that, for the dashed transect, the distances a and b between the transect and the tangent lines to R are 

such that a + b = d. 
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that is U IO, tk = 1 U (0, Wk (6)). An identical argument holds for particles 'near' the 
boundary of R. 

Now, two unbiased estimators of X. are 

Il = A E E~tiY )i (2.5) 
A E(t~y1) 

x 

and 
1 tiyi 

2= A E(t yl ) xi. (2.6) 

Note that if the distribution of 0 is degenerate then X, = X2. These estimators are exemplified 
in ?3. 

3. Examples 

By properly specifying the shape of the particles and properly choosing yi and the distribution 
of 0 in (2.5) and (2.6), all the available unbiased estimators in the LIS literature can be 
generated. Examples 1(a)-(c) deal with degenerate yi and Examples 2(a)-(d) deal with 
nondegenerate yi. 

Example 1 (a). Suppose that particles are of arbitrary shape and that yi = 1 for all i. Then, 
from (2.1) and (2.2), 

A 

- 
,tixi (3.1) 

L c, 

and 

X I E tixi (3.2) 

are unbiased estimators of X. The estimator X2 was given by Lucas and Seber (1977) for 
xi = 1, and by McDonald (1980) for arbitrary xi. For a special case, X, has been used in the 
forestry literature: see Example 1(c). 

Example 1(b). Suppose that the problem is as in Example 1(a) with 6 - U(0, 7). Let c* be 
the circumference of the convex hull of Pi, where the convex hull of Pi is the smallest convex 
set which contains Pi. In this case, since each particle is assumed connected, ci =c*/ 
(Kendall and Moran, 1963, p. 58) and 

77 tixi (3 
= L c*( 

One may measure c* by measuring the length of rope, say, which wraps around Pi. 

Example 1(c). Suppose that the problem is as in Example 1(b) with Pi a line segment, called 
a 'needle', of length li. By considering the needle to have infinitesimal width, we see that 
c 21. and therefore 

A 7T tixi 

This is an estimator often used in forestry applications of LIS where the needles represent the 
axes of logs (de Vries, 1979). See also Example 2(c). 

Before going to the examples with nondegenerate yi it will be convenient to develop a 
formula for E(tiyi I 6). Conditioning on t1 given 0, 
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E(tiyi 0 H) = E(tiy-i I 0 ti = O)pr(ti = 0 1 0) + E(tiyi I 0, ti = I)pr(ti = 1 0 0). 

Given ti = 0, tiyi is zero, and the first term is zero. Given ti = 1, ti-y equals yi, and, from (2. 1), 

E(tiy. I0) = E(yi I0, ti = 1) ')Lw ()34) 1 ~~~A 

Example 2(a). Suppose that particles are of arbitrary shape and that 6 has an arbitrary 
distribution. Suppose we are interested in estimating E ai/A, where ai is the area of Pi. Let yi 
equal the length of the intersection of Pi with the line in R which contains the transect. 
Denoting by U the distance defined in ?2 and using the facts that U 6 0, ti = 1 - U(O, wi(6)) 
and that yi is a function of the transect only through U, Lucas and Seber (1977) showed that 
E(yi I 0, ti = 1) = ai/wi(6). From (3.4), E(tiyi. 6 ) = Lai/A = E(tiyi) and 

X1 = X2 = itiyi. (3-5) L 

Thus, only the length of intersection needs to be measured to obtain an unbiased estimator 
of E ai/A. 

The first occurrence of (3.5) appears to have been in Rosiwal (1898), although it was 
presented without probability arguments as an approximation to E ai/A. For a description of 
Rosiwal's work see Chayes (1956). The unbiasedness of (3.5) was proved by Lucas and Seber 
(1977). 

Example 2(b). Suppose that particles in R are the projections .onto R of three-dimensional 
objects resting on R. Suppose we wish to estimate E vi/A, where vi is the volume of the ith 
object. Let yi be the area of the intersection of the ith object with the plane perpendicular to 
R which contains the transect. By an analysis very similar to that used by Lucas and Seber 
for the problem in Example 2(a) it is easy to see that E(yi I 0, ti = 1) = vi/wi(6). From (3.4), 
E(tiyi I 0) = Lvi/A = E(tiyi) and 

= X2 -ltiyi. 

Thus, only the area of intersection needs to be measured to obtain an unbiased estimator of 
E vi/A. 

An example similar to Example 2(b) can be given with yi equal to the length of the 
boundary of the intersection of the ith object with the plane perpendicular to R containing 
the transect. In this case, E(ty 1 I 6) = Ls,/A, where si is the surface area of the ith object. 

Example 2(c). Suppose that there are N logs above R and that the particles in R are needles 
which are the projections onto R of the axes of the logs. Suppose that we wish to estimate 
E vi/A, where vi is the volume of the ith log. As in Example 2(b) we could let yi be the area 
of the intersection of the ith log with the plane perpendicular to R which contains the transect, 
but this intersection would be elliptical, the area of which would be difficult to measure. It is 
more convenient to let yi be the area of the intersection of (i) the plane perpendicular to the 
ith log axis which intersects this axis directly above the point of intersection of the transect 
and the ith needle and (ii) the ith log. 

Let li equal the length of the ith log, Si the angle of the ith log axis with respect to R, and 
yi the angle of the ith needle with respect to 6 = 0. Thus, the length of the ith needle is 
lhcos &i. 

Given 6 and that the ith needle has been intercepted, the distance, r, from one end of the 
ith log axis along the axis to the sampling plane has a uniform distribution on (0, '1). Now, yi 
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is a function of r and 

E(yI6, t = 1)= - yi(r)dr=!?. 

Here, wi(6) = licos &i sin --yi 6 and, from (3.4), 

E(tiyl L 6) = Lviwi ()/(A 1i) 

= (Lvi/A) cos Si sin 0 -yi 

Thus 

12 t~(3.6) 
L cos Si sin I ayi 

When 6 - U(0, 7), then, as in Example 1(c), E{wi(6)) = (21i/7)cos Si and 
7T t~ 

XI=-2LE Yd.(3.7) 

For the case 6i 0, (3.7) is often used in forestry applications of LIS. Van Wagner (1968) 
pointed out that if (3.7) is used, with Si 0, a small bias will be incurred if the logs are 
moderately tilted. For example, if all the Si are less than 25?, the relative bias of (3.7) with 
Si 0 is less than 10%. Brown and Roussopoulos (1974) gave a table of factors by which to 
multiply (7"/2L) E tiyi in an effort to correct the bias due to object tilt when LIS is used to 
estimate the volume of forest debris. 

Assume that all log axes are parallel with R. Van Wagner (1968) derived the estimator (3.7) 
using a fixed transect and assuming that logs are distributed uniformly at random on R with 
individual logs uniformly oriented. He investigated the bias (over placement of the population 
of logs for the fixed transect) when the logs tend to be oriented in a particular direction and 
suggested using three transects at 60? angles to each other in order to guarantee a small bias. 

When the transect is located uniformly at random in R with 6 - U(0, 7), we see that (3.7) 
is unbiased, over placement of the transect, for any population of logs, whether oriented or 
not. However, if the logs do tend to be oriented (3.7) will have a large variance. In this case 
it would probably be preferable to use (3.6) with 6 degenerate at an angle perpendicular to 
the general orientation of the logs. How this scheme compares with the above scheme of three 
transects at 60? angles needs investigation. 

The problem in Example 2(c) was stated with logs as objects. In general, the estimators of 
volume/area in Example 2(c) may be preferable to the estimator of volume/area in 
Example 2(b) when objects are such that the areas of plane sections in a particular direction 
relative to an object are easier to measure than the areas of plane sections in arbitrary 
directions. 

Example 2(d). Suppose that particles in R are arbitrarily shaped, with the length of the 
boundary of P1 being li. Define yi to be the number of intersections of the boundary of P- 
with the line in R which contains the transect. Also, let Ki(6) be the total projection of the 
boundary of Pi onto a line in R perpendicular to 0, where each point of the projection is 
counted as many times as there are points on the boundary which project onto it (Kendall 
and Moran, 1963, p. 59; de Vries, 1979). 

Now, E(yi I 0, ti = 1) = Ki(6)/wi(6). When 6 - U(0, 7), then (Kendall and Moran, 1963, 
p. 59) Es {Ki()) = 2li/7, and therefore 

X 
xr1.oy (3.8) A 2L ti 
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This, except for differences in notation, is equation (8) of de Vries and Van Eijnsbergen 
(1973). Smith and Guttman (1953) gave (3.8) with xi = 1i with particular reference to the 
estimation of the surface area of objects in a three-dimensional medium. 

De Vries (1979, p. 44) stated that 'We have no expression for [pr(ti = 1)] unless the 
[particle's] shape can be exactly specified (e.g., a circular arc). Consequently we have no 
generally valid total-estimator [X,] here. It is advised not to use the practice of considering 
multiple intersections just as one intersection in LIS' [his italics]. However, the practice of 
considering multiple intersections just as one intersection is simply the practice of using yi = 1 
for all i in (2.5). 

From (2.2) we do have an expression for pr(ti = 1) and when 6 - U(O, 7), from 
Example 1(b), pr(ti = 1) = Lc0/(rrA). Thus, in this case an alternative to (3.8) is (3.3). The 
choice between these two estimators depends on the ease of measurement ofyixi/li as opposed 
to the measurement of x /c., and on the variances of the estimators. Intuitively, (3.8) will 
have a larger variance than (3.3) if yixi/li, given ti = 1, has a positive variance. Notice that if 
the particles are convex, then ck = 1i, and (3.8) and (3.3) are equal since yi 2. 

The unbiased estimators of McIntyre (1953) can also be derived but they will not be 
presented here because they require the restrictive assumption that the particles are magni- 
fications of a known shape. 

4. Variance and Variance Estimation 

By the formula for the variance of a linear combination of random variables, and taking X, 
from (2.5), we have 

ar(X1) I var(t iyi) I cov(tiy1, tyj) (4.1) A2 E(ti yi)}2 A2 iti E(tiyi)E~tjyj) 
The variance terms are tractable, being independent of the locations of P1, .i. , PN on R. The 
difficulty is that cov(tiyi, tjyj) depends on the relative locations of Pi and Pj. Even in simple 
examples the variance formula remains intractable and has proved to be of no help in either 
the estimation of variance or the design of an LIS survey. Similar comments apply to the 
variance of X2, from (2.6). 

For the case of a population of needles located and oriented uniformly at random in R, 
de Vries (1973) obtained a variance formula (over placement of the needles for a fixed 
transect) for the estimator in Example 1(c), and showed how this formula might be used for 
the estimation of variance from single-line data and in the design of an LIS survey, giving 
due caution on its use with a fixed population. This variance formula is essentially (4.1) with 
the covariance terms set to zero. It is planned, in a further paper, to give conditions on a 
population under which one might expect to be able to ignore covariance terms and obtain 
a reasonable approximation to the true variance (over placement of the transect for the fixed 
population) in order to aid in the design of general LIS surveys. 

In order to be able to estimate the variance of the estimator of X, it is desirable to sample 
m > 1 transects of length L, chosen independently according to the sampling scheme. The jth 
transect yields an estimate, Xj, of X. As these Xj are independent and identically distributed, 
they are probably best pooled by taking their arithmetic mean. The sample variance of the 
Xj can be used to estimate the variance of the mean. The Central Limit Theorem applies here, 
so valid confidence intervals may be obtained for large m. For moderate m it is probably 
reasonable to use the usual confidence intervals based on the t distribution. In most practical 
situations, to achieve reasonable values of the coefficient of variation of the estimator, 
multiple transects will be called for. Pickford and Hazard (1978) give an illustration of this 
point even for very 'homogeneous' populations. 
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5. Unbiased Estimation with Random Transect Length 

It will often be convenient to sample a transect which runs entirely across the area of interest. 
Seber (1979) suggested one such sampling scheme in which the estimators (3.2) and (3.5) are 
biased, and suggested using the jackknife to reduce the bias and provide an estimate of 
variance. In this section we present a sampling scheme with the transect running entirely 
across R, for which the estimators (2.5) and (2.6), with E(tiyi) and E(tiyi 0 H) evaluated as if the 
sampling scheme of ?2 with fixed L were being used, are unbiased. 

This sampling scheme is as follows. Choose a point uniformly at random in R and run a 
transect through this point in the direction 0 generated independently with arbitrary distri- 
bution. The transect will run entirely across R, and its length, L, will therefore be a random 
variable. This kind of sampling scheme was considered by Miles and Davy (1976) for 
problems in stereology. However, the scheme to be described here is not contained in the 
work of Miles and Davy since they restricted themselves to taking measurements in the 
sample line and so did not consider estimators like those in Examples 1(a) and 2(c). 

Let W(0) be the maximum perpendicular distance between lines tangent to R in the direction 
8. A transect may be uniquely indentified by its direction 8 and by its perpendicular distance, 
q, from the left-hand (when facing in the direction 6) tangent line to R in the direction 6; see 
Fig. 3. Thus, the set of all transects is given by {(6, q): 0 0 6 < r, 0 < q < W(O)) = D, say. 
What is the probability distribution on D generated by the above sampling scheme? Let 
L(O, q) denote the length of the transect with (direction, distance) pair equal to (6, q). For a 
given 6 the transect will have q in the interval (q, q + dq) if the random point chosen in R is 
in a strip of area L(O, q) dq about the (6, q) transect. Thus, the density function of q given 6 
is f (q I 6) = L(0, q)/A for 0 < q < W(6) and is zero otherwise. 

This gives an alternative method of generating a transect according to the present sampling 
scheme: that is, generate 0 E [0, i) and then generate a quantity q with 0 < q < W(0) from 
the density L(6, q)/A. Although it is easier to generate a transect for use in practice according 
to the original description of this sampling scheme, the alternative characterization is easier 
to use to prove the unbiasedness of the estimators. 

In order to distinguish between them, moments of random variables with respect to the 

L0 ~ q ej8 

s1(e) w(e) 
Figure 3. An illustration of some quantities needed in the proof of the unbiasedness of the estimators 

in the random-length sampling scheme. 
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sampling scheme of this section will be starred and moments with respect to the sampling 
scheme of ?2 will be unstarred. 

The statistic X2 of (2.6) is unbiased if 

E0t i0}-1 (5.1) 
{E(t!''Y,) 

Make explicit the dependence of yi and t, on the sampled transect by writing them as y(0, q) 
and t1(0, q). Define r1(0) to be the perpendicular distance between the left-hand tangent to R 
in the direction 0 and the left-hand tangent to P, in the direction 0, and define si(0) to be the 
perpendicular distance between the left-hand tangent to R in the direction 0 and the right- 
hand tangent to P, in the direction 0; see Fig. 3. From (3.4), 

E(tiiy 1 0) = Lw1(0)E(yi I 0, ti = 1)/A. 

By the uniform distribution, given 0 and t1 = 1, of the distance U defined in ?2 when the 
fixed-length sampling scheme is used, 

IvA(9) 

w1(0)E(y1J0, t1 = 1) = j y,{O, ri(0) + u} du 

= I(0), say. (5.2) 

Thus, (5.1) is true if E*(Atjy1/L 10 ) = I(0) but 

EA(Aiji o)=fW Atl(0, q)yj(O, q) L(0, q)}d 
( L ) J(nL(0, q) A 

= .f qtJ~q} y1(0,q)dq 
qt( fl{i(.q)= 1 

= {yi(0, q) dq = I(0), (5.3) 
Jzj(O ) 

and N2 is unbiased. 
That E*(X1) of (2.5) equals xJ1A follows by taking expectations over 0 of (5.2) and (5.3). 
In all of the Examples in ?3, yi is a function of the transect only through its orientation, 0, 

and the distance U defined at the end of ?2. Thus, the estimators presented in ?3 are unbiased 
under either the sampling scheme of ?2 or that of this section. 

To estimate the variance of the estimator of XA, it is necessary to sample independently 
m > 1 transects according to the sampling scheme. As the m estimators obtained from these 
transects are independent and identically distributed it seems reasonable to pool them by 
taking their arithmetic mean and estimating the variance of the mean by using the sample 
variance among these m estimators. 

The sampling scheme here differs from that of Seber (1979) in that Seber set 
f (q I 0) = 1 / W(0) for 0 < q < W(0) and zero otherwise, while here the distribution of q given 
0 is 'weighted by the length of the transect'. 

6. Conclusion 

The examples in ?3 illustrate that, for the derivation of the estimators (2.6) and (2.5) in a 
particular problem? for use with either the fixed- or random-transect-length sampling schemes, 
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it is necessary to obtain expressions for E(y- I 0, t4 = 1) and EB{ w1(0)E(yH I 0, t = 1)} 
respectively. 

The real problems in LIS are in the area of design. While it is possible to design an LIS 
survey based on a pilot sample of transects, it would be desirable to have approximations to 
the variances of (2.5) and (2.6) which might be used with prior knowledge of the population 
to help in the design of an LIS survey. 
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RESUME 

On presente une theorie pour une estimation sans biais du nombre total d'individus de nature 
quelconque dans un 6chantillonnage sur un segment, pour des transects de longueur fixee on aleatoire. 
Cette theorie synthetise les resultats connus sue l'6chantillonnage sur un segment. Des exemples sont 
donnas et la variance d'estimation est discutee. 
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