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Abstract. We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the
location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and
ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved
with lidar canopy height models. Identification of local maxima within the resultant wavelet transformation image then
allowed determination of the location, height, and crown diameters of individual trees. In this analysis, which focused solely
on individual trees within open canopy forests, 30 trees incorporating seven dominant North American tree species were
assessed. Two-dimensional (2D) wavelet-derived estimates were well correlated with field measures of tree height (r = 0.97)
and crown diameter (r = 0.86). The 2D wavelet-derived estimates compared favorably with estimates derived using an
established method that uses variable window filters (VWF) to estimate the same variables but relies on a priori knowledge
of the tree height – crown diameter relationship. The 2D spatial wavelet analysis presented herein could potentially allow
automated, large-scale, remote estimation of timber board feet, foliar biomass, canopy volume, and aboveground carbon,
although further research testing the limitations of the method in a variety of forest types with increasing canopy closures is
warranted.

Résumé. Nous décrivons et évaluons une nouvelle technique d’analyse, l’analyse spatiale en ondelettes (ASO) pour estimer
automatiquement la localisation, la hauteur et le diamètre de la couronne des arbres individuels dans des peuplements de
conifères mixtes à couvert ouvert à partir de données lidar (light detection and ranging). Des ondelettes à deux dimensions
de type chapeau mexicain pour une variété de diamètres de couronnes d’arbres potentiels ont été convoluées avec des
modèles de hauteur de couvert lidar. L’identification de maximums locaux à l’intérieur de l’image de transformation en
ondelettes résultante a permis par la suite la détermination de la localisation, de la hauteur et des diamètres des couronnes
des arbres individuels. Dans cette analyse, qui s’est concentrée seulement sur les arbres individuels à l’intérieur de forêts à
couvert ouvert, 30 arbres représentant sept espèces dominantes d’arbres d’Amérique du Nord ont été évalués. Les estimations
2-D dérivées des ondelettes étaient bien corrélées avec les mesures de terrain de la hauteur des arbres (r = 0,97) et du
diamètre de la couronne (r = 0,86). Les estimations 2-D dérivées des ondelettes se comparaient avantageusement aux
estimations dérivées à l’aide d’une méthode établie utilisant des filtres de fenêtre variable (FFV) pour l’estimation de ces
mêmes variables, mais qui est basée sur la connaissance a priori de la relation hauteur des arbres/diamètre de la couronne.
L’analyse spatiale en ondelettes 2-D présentée ici pourrait potentiellement permettre l’estimation automatisée à grande
échelle par télédétection du pied-planche de bois de sciage, de la biomasse foliaire, du volume du couvert et du carbone
aérien, bien que des recherches additionnelles pour tester les limites de la méthode dans divers types de forêts avec des
fermetures du couvert croissantes soient nécessaires.
[Traduit par la Rédaction]
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There has always existed a need in the remote sensing
community for information at the individual plant scale, but
researchers have instead relied on broader scale inferences
because of limitations in image spatial resolution. High spatial
resolution (i.e., <5 m equivalent pixel size) structural datasets
may provide viable alternatives to such assumptions. For
instance, data derived from light detection and ranging (lidar)
systems provide canopy information including tree height,
canopy height variability, and canopy closure (e.g., Nilsson,
1996; Lefsky et al., 1999; Means et al., 1999; Harding et al.,
2001; Naesset and Bjerknes, 2001; Hudak et al., 2002;
Holmgren, 2004; Nelson et al., 2004; Anderson et al., 2005).

Aerial photography and other high spatial resolution imagery
have been used to automatically detect and measure individual
trees through various filtering techniques and textural analysis
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methods (Fournier et al., 1995; Gougeon, 1995; Asner et al.,
2003; Wulder et al., 2004). Such techniques determine the
location of individual trees by detecting local maxima within an
image, where each local maximum corresponds to an individual
treetop (Pouliot et al., 2002; Wang et al., 2004). Although such
methods can resolve individuals (i.e., provide a map in which
single objects can be visually distinguished), they generally do
not automatically extract information on each object separately,
but rather for the entire thematic collection of objects (e.g., as a
cover or stand map). When such methods are used in conjunction
with a lidar-derived canopy height model (CHM), however, the
detected local maxima correspond to the location and heights of
individual trees. The accuracy of tree-detection algorithms (both
aerial photography and lidar based) are largely dependent upon
the structural complexity of forest stands, with high accuracies
attained in open, single-story stands and comparatively lower
accuracies in closed multistory stands (Maltamo et al., 2004).

Several studies have also used a combination of lidar with
multispectral or hyperspectral data to extract additional
individual tree information such as tree crown diameter, tree
location, and tree species (e.g., Evans et al., 2001; Popescu et
al., 2003; Leckie et al., 2003; Brandtberg et al., 2003; Maltamo
et al., 2004; Popescu and Wynne, 2004; Riano et al., 2004;
Koukoulas and Blackburn, 2005). Even though lidar has the
potential to provide high-precision data at the subcanopy scale,
it remains difficult to accurately identify individual tree
attributes (Popescu et al., 2003; Anderson et al., 2005),
especially in closed or multistory stands. In addition, most
traditional filtering methods evaluate features at only one
particular operator or kernel size, which is typically selected by
the analyst to match the specific application. For example,
Wang et al. (2004) implemented a Laplacian of the Gaussian
(LoG) filter to delineate isolated trees and clumps of trees from
high spatial resolution aerial photography. Although the
potential of evaluating multiple operator sizes of LoG was
highlighted by Wang et al., the authors did not attempt such an
analysis, citing known difficulties associated with integrating
LoG results from multiple operator sizes (i.e., Lu and Jain,
1998).

In contrast, recent advances in object-orientated image
processing techniques have demonstrated the potential of
wavelet analysis to identify and assess individual objects
separately over a range of scales (Ulfarsson et al., 2003; Yu
and Ekstrom, 2003; Li, 2004; Pajares and de la Cruz, 2004;
Strand et al., 2006). Wavelets have proven to be important
tools for remote sensing analyses, with previous applications
in the areas of image filtering, hyperspectral data analysis,
image reconstruction, image registration, texture analysis,
data fusion, and feature matching (e.g., Le Moigne et al.,
2002; Teggi et al., 2003; Ulfarsson et al., 2003; Sakamoto et
al., 2005).

Although over 100 peer-reviewed articles have demonstrated
wavelet-based techniques in environmental remote sensing
applications, nearly all of these studies employ one-
dimensional (1D) wavelets, leaving the capabilities of two-
dimensional (2D) wavelet analyses largely unexplored, with the

exception of Ulfarsson et al. (2003), Myint et al. (2004), and
Strand et al. (2006).

Recent remote sensing studies that have employed wavelets to
identify vegetation structure have continued to follow the well-
trodden engineering wavelet paradigm in that they analyze 1D
signals (e.g., time series of individual pixels, line samples of
sensor imagery, or analysis of hyperspectral pixels separately)
rather than investigating the 2D (i.e., image) spatial arrangement
of pixel assemblages exhibiting similar or divergent spectral or
structural attributes. For example, several studies have used 1D
wavelets to analyze hyperspectral pixels to detect soils or
individual plant species (Koger et al., 2003; Kempeneers et al.,
2005; Zhang et al., 2005). Bradshaw and Spies (1992), Lindsay
et al. (1996), and Jordan and Schott (2005) analyzed strips of
satellite sensor data to detect forest canopy gaps, surface
properties of sea ice, and topographic features. Bruce et al.
(2001) and Li (2004) used 1D wavelets to improve the relative
abundance of endmembers for spectral unmixing. Pu and Gong
(2004) applied 1D wavelets to individual Hyperion pixels to
estimate the leaf area index (LAI) and crown closure. Sakamoto
et al. (2005) used 1D wavelets on separate pixels within a
moderate-resolution imaging spectroradiometer (MODIS) derived
enhanced vegetation index (EVI) time series to isolate seasonal
trends.

In contrast, 2D wavelet analysis in remote sensing data has
been restricted to matching different image sources for data
fusion (Ulfarsson et al., 2003) and image georegistration,
although a few studies have employed 2D wavelets to detect
buildings within urban areas (e.g., Myint et al., 2004; Vu et al.,
2003). Strand et al. (2006) introduced a further application of
2D wavelet analysis that provides information on the spatial
location and size (i.e., tree crown diameter) of multipixel-sized
trees within a time series of historical aerial photographs. This
2D wavelet analysis technique, which can be applied to any
raster dataset, shows considerable promise for objectively and
automatically quantifying vegetation structure and biomass,
even without yet exploiting the structural dimensionality
afforded by lidar data.

In this paper, we assess the utility of this 2D wavelet analysis
method to automatically determine the location, height, and
crown diameter of individual trees from a lidar CHM. We
compare the results of the 2D wavelet analysis method with
those from an established lidar-based tree extraction and
measurement technique, developed by Popescu et al. (2003),
which implements variable window filters (VWF) to detect and
measure individual trees. The accuracy of the lidar-derived
individual tree measures (height and crown diameter) from
both techniques is then determined through a comparison with
field reference measurements.

Methods
Field sampling

The study area is located on Moscow Mountain,
approximately 9 km northeast of the city of Moscow in north-
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central Idaho, USA (latitude 46°44′N, longitude 116°58′W).
The forested land is comprised of a mixed conifer forest type
that is diverse in both species composition and forest structure.
Common conifer species include Pinus ponderosa,
Pseudotsuga menziesii, Abies grandis, Thuja plicata, Pinus
contorta, Larix occidentalis, and Picea engelmannii.

In a previous study (Falkowski et al., 2005), 83 forest
inventory plots were located on Moscow Mountain using a
stratified systematic sample design based on elevation, solar
insolation, and LAI strata (calculated following Pocewicz et al.,
2004). Sampling in such a manner produced spatially irregular
plot locations covering the full range of vegetation types and
canopy conditions across Moscow Mountain. Plot center
positions were precisely recorded with a Trimble ProXR global
positioning system (GPS). Following measurement in the field,
the GPS data were differentially corrected and averaged to
achieve a three-dimensional (3D) point position accurate to
within ±0.8 m horizontally and ±1.1 m vertically.

Those plots having an open canopy structure were subset (N =
15) for this analysis, because the 2 m nominal post spacing of the
lidar survey could not resolve individual tree crowns in closed
canopy conditions. Within each 0.04 ha (radius = 11.35 m) fixed-
radius plot, diameter at breast height (DBH), species, and
distance and bearing from plot center (i.e., location) were
recorded for every tree or snag ≥2.7 cm DBH. Individual tree
height and crown diameter were also measured for each tree
within the 15 plots using an Impulse 200 laser rangefinder (Laser
Technology Inc., Englewood, Colo.). From the subset of 15 open
canopy plots, 30 individual trees could be easily distinguished
from the lidar CHM (Figure 1b). Each plot had fewer than 1.4
trees per hectare and an average basal area of 0.54 m2/ha. The
selected trees had a height range of 3.96–40.72 m (average =
19.84 m) and crown diameter range of 2.07–14.55 m (average =
6.36 m).

Lidar acquisition and processing

Lidar data (1.95 m nominal post spacing) were acquired in
summer 2003 across Moscow Mountain with an ALS40 system
(Horizons, Inc., Rapid City, S.Dak.). The system operated at a
wavelength of 1064 nm and was flown at approximately
2500 m above mean terrain elevation. Once acquired, the lidar
data were filtered to remove laser returns with a scan angle
greater than 18°. Following Evans and Hudak (2005), the
filtered lidar data were then separated into ground and
nonground (principally vegetation) returns using a progressive
curvature filter (http://forest.moscowfsl.wsu.edu/gems/lidar).
A 2 m digital elevation model (DEM) was created from the
identified ground returns using a natural neighbor interpolation
algorithm within ArcGIS (ESRI, Redlands, Calif.). Following
DEM creation, the height of each nonground lidar return was
calculated based on its distance from the DEM surface. A
CHM, with a spatial resolution of 0.5 m, was then computed
from the nonground lidar returns using the natural neighbor
algorithm in ArcGIS.
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Figure 1. Three-dimensional mesh plots of (A) the two-
dimensional Mexican hat wavelet, (B) an example canopy height
model (CHM), and (C) a single tree subset from the CHM.



Lidar-based tree height and crown diameter

Two separate methods were used to automatically detect the
location, height, and crown diameter of individual trees from
the lidar-derived CHM. The first method is a previously
published lidar analysis technique that uses variable-sized
windows to detect local maxima (tree heights) within the CHM
(Popescu et al., 2003; Popescu and Wynne, 2004), whereas the
second method employs 2D wavelet analysis, referred to herein
as spatial wavelet analysis (SWA), to measure tree heights and
tree crown diameters directly from the CHM.

Variable window filters (VWF)

The variable window filters (VWF) are a function of the
height (Z value) of each pixel within the CHM and are
automatically derived based on empirical relationships between
tree height and tree crown diameters. The local maxima within
each window correspond to the locations and heights of
individual trees. The VWF approach is limited in that it
requires a priori knowledge of the tree height – crown diameter
relationship; improper specification of this relationship greatly
reduces the accuracy of individual tree height estimates.
Additionally, weak relationships between tree height and crown
diameter will result in inaccurate tree crown diameter
estimations.

The VWF algorithm developed by Popescu and Wynne
(2004), which is currently coded and executed within the Inter
Active Data Language (IDL; Research Systems Inc., 2005),
was adapted for the Moscow Mountain study area by modifying
the equation it implements to estimate crown diameter from
tree height. Unfortunately, on Moscow Mountain the
relationship between tree height and crown diameter was weak
(Pearson’s correlation coefficient r2 = 0.34, root mean square
error (RMSE) = 1.61 m). This relationship becomes stronger
(r2 = 0.51, RMSE = 1.30 m) when other field-measured
variables (tree species and DBH) are included. Because the
VWF algorithm operates solely on the CHM, however,
parameters other than height are not included within the crown
diameter prediction equation. The modified equation for the
Moscow Mountain trees is as follows:

cd = 2.56 + 0.14h (1)

where cd is the tree crown diameter, and h is the tree height in
metres.

Spatial wavelet analysis (SWA)

The second method used to estimate tree heights and crown
diameters from a lidar CHM employs SWA to automatically
identify the location (x, y) of each separate tree and estimate
individual tree crown diameters and tree heights.

The wavelet transform (WT) is akin to Fourier analysis often
used to analyze signals. In Fourier analysis, an infinite signal is
decomposed into a series of sine and cosine basis functions
over a range of frequencies. For each frequency component, an

associated weighting is assigned that represents the
contribution to the original signal. Summation of each
weighted component allows reconstruction of the original
signal. A common application of signal decomposition is
denoising, in which the reconstruction occurs after the
component due to the frequency (or characteristics feature size)
associated with the noise is removed (e.g., Wink and Roerdink,
2004).

In contrast, the WT decomposes signals with finite basis
functions, termed wavelets (Addison, 2002). In wavelet
analysis, the basic shape of the wavelet, termed the mother
function {ψ λ( )}, is dilated over a continuum of scales to
produce a series of daughter wavelets, {ψ λa b, ( )}. This process
is described by the following equation:

ψ λ ψ λ −
a,b( ) = ⎛

⎝
⎜ ⎞

⎠
⎟1

a

b
a

(2)

where λ is the multidimensional location of the center of the
daughter wavelet, a is the scaling factor of the function (i.e.,
dilation scale or frequency), and b is the translation variable
(i.e., the parameter responsible for shifting the physical
location of the center of the daughter wavelet (Bruce and Li,
2001)). Applying the WT over a range of scales transforms the
original signal into a series of outputs that each highlights the
scale (i.e., dilation scale) and location of image features
(Addison, 2002).

The principal advantage of SWA over traditional filtering
methods such as LoG is that the technique is not restricted to
analyzing features of a characteristic scale (i.e., often the
operator or kernel size). Additionally, SWA is different from
other multiscale techniques, such as Gaussian windowed fast
Fourier transforms (commonly known as the Gabor
Transformation) because, as the wavelet mother function is
dilated, the shape of the function (in this paper the 2D Mexican
top hat) within the operator is retained. These two
characteristics of wavelet analysis allow the assessment of
features that have a characteristic shape but do not have a
characteristic size (e.g., tree crowns).

Following the methodology of Strand et al. (2006), a series
of 2D Mexican hat wavelets (Equation (3); Figure 1a) of
progressively larger sizes (1–15 m, in increments of 0.1 m)
were convolved with the lidar-derived CHM for each of the 15
plots. The 2D Mexican hat wavelet mother function (Equation
(3)) is dilated and shifted across the lidar-derived CHM
according to the WT (Equation (2)):

ψ(x, y) = (1 – x2 – y2) exp[–(x2 + y2)/2] (3)

The Mexican Hat wavelet was chosen because its shape
approximates that of individual coniferous trees within a lidar-
derived canopy height model (Figures 1b and 1c). The wavelet
algorithm records three parameters, namely wavelet size (i.e.,
tree crown diameter), object location (x, y), and a goodness-of-
fit metric (i.e., the weighting of that dilation component). When
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objects within the CHM (i.e., trees or shrubs) are similar in both
shape and size to the specific 2D Mexican hat wavelet, a high
goodness-of-fit metric is recorded. This metric is normalized
by the 2D wavelet size such that inflated goodness-of-fit values
are not recorded when both the 2D wavelet and the image
feature are large but not necessarily similar in shape. The (x, y)
location of each tree and the 2D wavelet size (i.e., tree crown
diameter) associated with the highest goodness-of-fit metric for
each separate tree are then recorded in an ASCII file. The 2D
wavelet algorithm was coded and executed with Matlab® (The
MathWorks Inc., 2004). Further to Strand et al. (2006), the

lidar-based SWA approach presented herein provides a
measure of tree height in addition to automatically detecting
the location and crown diameter of individual trees. This is
accomplished by subsetting the CHM by each identified crown
diameter. Tree heights are then determined by extracting the
maximum height within each subset CHM (see Figure 2 for a
graphical representation of this process).

The SWA method does not require a priori information about
the stand (i.e., empirical tree height – crown diameter
relationships) and has been shown to be effective (r = 0.96, n =
69) at measuring the tree crown diameters of western juniper
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Figure 2. A schematic diagram of the process used to determine tree crown diameters and tree
heights in this study. (A) The smallest 2D Mexican hat daughter wavelet is convolved with the
lidar-derived canopy height model (CHM). (B) The 2D daughter wavelets are then dilated in
0.1 m increments across a series of scales and convolved (at each scale) with the CHM.
(C) The size of the 2D daughter wavelet is retained when it best “matches” the size of features
within the CHM (tree crowns). The height of each tree (HT) is then determined by extracting
the maximum height from the CHM within each predicted crown diameter (CD).



(Juniperus occidentalis) in aerial photographs (Strand et al.,
2006). In Strand et al. (2006), the method was applied with an
inverted Mexican hat wavelet basis function to evaluate dark
objects (juniper trees) on a lighter background (sage-brush and
bare soil). Although this indicates that the method could
therefore be used to evaluate dark features within the CHM
(i.e., canopy gaps), such an application is limited because these
features are typically not regular 2D shapes.

Results
The performance of each tree height and crown width

estimation strategy was validated with field-measured tree
heights and crown widths and statistically analyzed using root
mean square errors (RMSE) and Pearson’s correlation
coefficients (r). The extraction of individual tree heights from
lidar data via the VWF (R = 0.97, RMSE = 2.81 m) and SWA
(R = 0.97, RMSE = 2.64) produced similar results. In addition,
both VWF and SWA underestimated the height of individual
trees (bias = –6% and –4%, respectively) (Table 1; Figure 3).
For crown widths, the SWA algorithm produced slightly better
results (R = 0.86, RMSE = 1.35 m) than the VWF method (R =
0.79, RMSE = 1.66 m) (Table 2; Figure 4). As with tree height
estimation, both methods underestimated tree crown widths.
SWA was moderately biased (–7%), however, whereas the
VWF algorithm exhibited a large negative bias (–15%).

Discussion and conclusions
A novel approach to estimating the height and crown

diameter of individual trees from lidar data using SWA
compared favorably with the previously published VWF
approach (Popescu and Wynne, 2004). The difference in
RMSEs between methods was only 17 cm, which is small
relative to the RMSE. This suggests that individual tree heights
in open forest stands can be accurately quantified from lidar
data using either technique. The fact that the SWA method does
not require a priori knowledge of the tree height – crown
diameter relationship, while the VWF method does require this
information to work properly, is a clear advantage of the SWA
technique is this forest environment. The moderate negative
bias associated with lidar-derived tree height estimates was
expected because lidar systems typically underestimate tree
canopy heights (e.g., Gaveau and Hill, 2003). These
underestimates were due to the lower probability that an
emitted pulse will strike the top of a tree rather than elsewhere
on the tree crown. Additionally, each laser pulse will penetrate
tree foliage to some degree before being reflected back to the
sensor (Gaveau and Hill, 2003; Maltamo et al., 2004).

For the lidar-based tree crown diameter measures, the SWA
technique is superior to the VWF technique. The difference in
RMSE between the SWA and VWF techniques was 31 cm,
which is high relative to the RMSE. The SWA algorithm
produced better estimates of tree crown diameter because it
directly measures the size of features within a CHM, rather than

relying on empirical relationships between tree height and tree
crown diameter. Because the relationship between tree height
and crown diameter was weak (R2 = 0.34, RMSE = 1.61), the
poor performance of the VWF technique was not unexpected.
The VWF method could outperform the SWA technique in
areas where tree height and crown diameter are strongly
related. However, such a case remains to be tested.

The results presented herein suggest that low-density lidar
data (e.g., 2 m post spacing in this analysis) can augment
traditional forest inventories in open forest stands by providing
reliable remote measures of individual tree heights and crown
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Figure 3. Scatterplots of field-measured tree heights versus tree
heights predicted by (A) spatial wavelet analysis (SWA) and
(B) variable window filters (VWF).

Method Correlation
RMSE
(m) Bias

%
Biasa

Spatial wavelet analysis 0.97 2.64 1.04 –4
Variable window filter 0.97 2.81 1.06 –6

a% Bias = 1 – bias.

Table 1. Correlation coefficients, root mean square errors
(RMSE), and biases between estimated and field-measured tree
heights.



diameters. The SWA method produced estimates of these
variables that either matched or improved upon the estimates
derived from the VWF method. The current study only
assessed the lidar-based techniques in open forest stands where
individual tree crowns could be easily differentiated. The
accuracy of most individual tree height extraction methods has
been shown to decrease with an increase in canopy closure and
tree density (Maltamo et al., 2004). We expect that the same
will hold true for lidar-based tree crown diameter estimates.
However, further research using higher density lidar data must
be conducted to determine the canopy cover or tree density

threshold at which these techniques begin to break down and
whether such methods are also applicable in other forest types.
In evaluating this threshold for individual tree assessment
within aerial photography, Strand et al. (2005) has found that
such methods fail to accurately detect individuals at canopy
covers exceeding 55%. With respect to lidar, this threshold will
be dependent on the post spacing of the lidar data, as very dense
post-spacing data (i.e., <1 m) are more likely to contain a
higher percentage of intracanopy returns and would likely
allow improved delineation of neighboring tree crowns. A
further issue dependent on adequate post spacing and canopy
cover is the influence of edge effects on the SWA-based
estimate of crown diameter. Although the edge effects
associated with the negative portions present in the 2D wavelet
function can be assumed incorporated into the measurement
error, data with a small percentage of low height values in the
CHM (i.e., dense canopy or high lidar post spacing) will render
it more difficult to attain an accurate match between the 2D
Mexican hat wavelet and tree crown shape.

This initial application of lidar-based SWA demonstrates the
potential to provide truly “spatial–structural” information on
each delineated tree. In a similar manner, SWA could be
performed on spectral datasets to provide “spatial–spectral”
information on identified image objects. Application of SWA to
structural and spectral datasets would then provide information
on image objects, rather than the current remote sensing
paradigm, in which the spectral information of each pixel
within an object is assessed as an independent aspatial
observation.
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