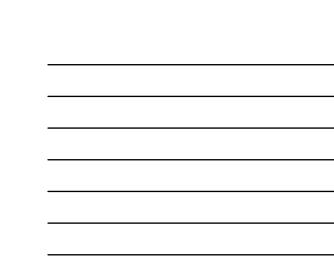
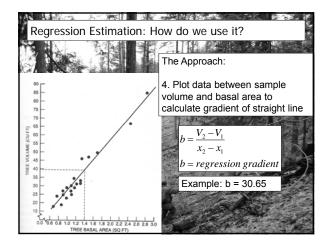


Regression Estimation: Why do we	e use it?
Question: If we want to measure the vo	
but don't have enough resources – what	at can we do?
VAL ALTREAM AND	
	AT T
Answer: We can compromise and	d use 3P, regression, or
ratio estimation techniques !!!	
	and the state
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	A A BET
	a stop a may a
	the second second second

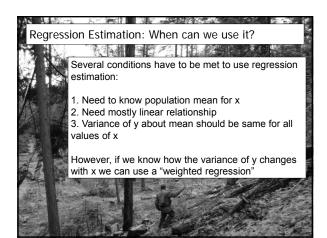

3. Measure simple random sample of both

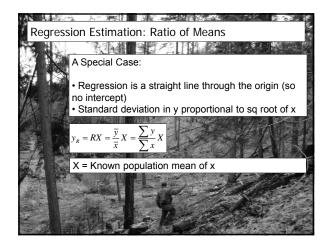

From simple random sample of 20 trees: Basal area sample mean, $\overline{x} = 1.27$ Volume sample mean, $\overline{v} = 35.1$ (ft³)

Regression Estimation: How do we use it?

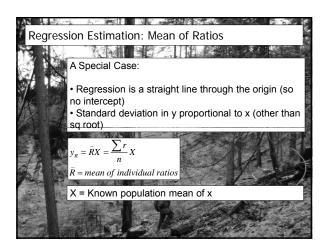
The Approach:

variables

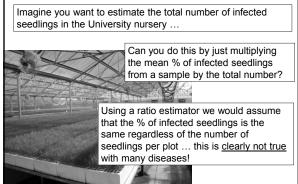


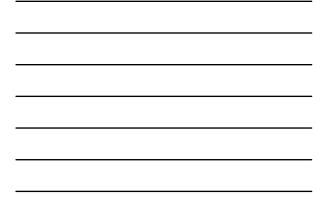


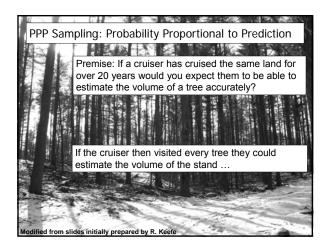
Regressio	on Estimation: How do we use it?
	The Approach:
	5. Calculate regression to combine datasets
12 14	$V_R = \overline{v} + b(\mu_x - \overline{x})$
	V = volumes
	$\overline{x} = sample mean of basal areas$
	$\mu_x = population mean of basal area$
a A S	b = regression gradient
	V _R = 35.1 + 30.65*(1.40-1.27) = 39.1 (ft ³)
	A Deve Content

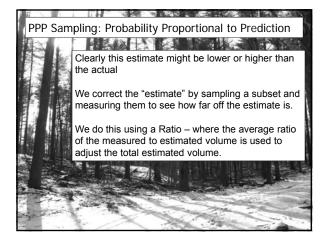


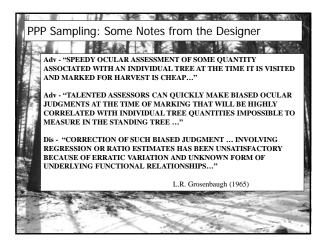
Regress	sion I	Estin	natior	ו: R	atio	of Mea	ans			
	1	1			3					
	Exar	nple:								
	Ρορι	ulatio	n N = n mea n = 1	in of		BH) = 1	1.2			
		DBH	Height			1.51				
		DBH 8	62					1.	$\overline{\Lambda}$	
		DBH				AR		1	Λ	
		DBH 8 13	62 81			y = R		A	Λ	
		DBH 8 13 5	62 81 40 46 123			y = R		11.2	= 79.3	3
		DBH 8 13 5 6 19 9	62 81 40 46 123 74			AR		11.2	= 79.3	3
		DBH 8 13 5 6 19 9 8	62 81 40 46 123 74 52			y = R		11.2	= 79.3	3
		DBH 8 13 5 6 19 9 8 11	62 81 40 46 123 74 52 96	1121 8		y = R		11.2	= 79.3	3
		DBH 8 13 5 6 19 9 8 11 5	62 81 40 46 123 74 52 96 36			y = R		11.2	= 79.3	3
		DBH 8 13 5 6 19 9 8 11	62 81 40 46 123 74 52 96			y = R		11.2	= 79.3	3
	Total	DBH 8 13 5 6 19 9 8 11 5	62 81 40 46 123 74 52 96 36	R =	7.083	y = R		11.2	= 79.3	3

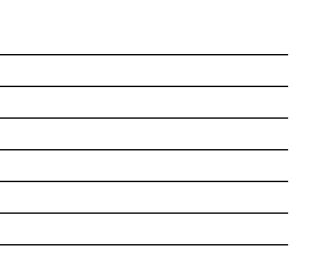


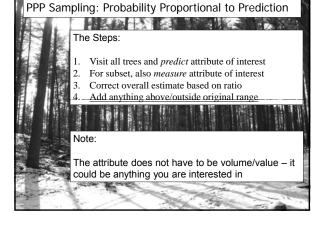


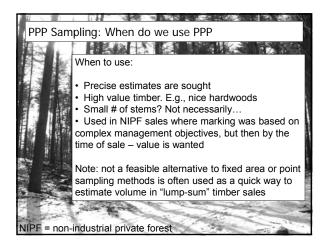

Regress	Exan Popu Popu	nple:	N = 100 mean c	f x = 76
	x 36	y 18	r 0.500	ALC IN
En Tob	30 95	48	0.505	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	46	0.426	DV
	172	74	0.430	y = RX
12 4	126	58	0.460	y = 0.474 * 76 = 36.024
	58	26	0.448	and the second of the second o
	123	60	0.488	and the second second second
State Aller	98	51	0.520	
	54	25	0.463	
and the second	14	7	0.500	
and the second second				I DENTAL STORE STORE
		Total	4.741	Charles De Charles a manager se
		Mean	0.474	



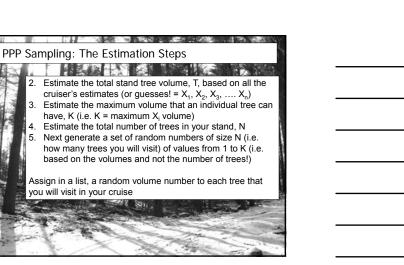


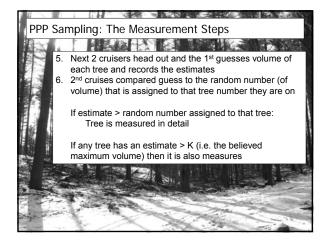




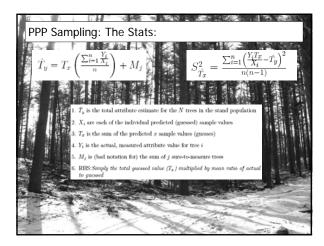


PPP	Sampling: Before We Head out 1. Use the preliminary sample size equation to determine the number of trees you need to measure $n = t^2CV^{2/\%}E^2$ n = samples of trees to achieve precision of allowable percentage error, %E (for PPP typically set to 1.5%) t = t-value (2 for 95% level) CV = coefficient of variation of yi yi= ratio of measured volume to estimated volume Note: Most cruisers get CV to be within 15%
and the second s	and the second sec


-


2.

3.


4

5.

