

8: 1A									
Double Sampling: Why and Where is it used?									
Double sampling allows you to use regression and ratio									
estimation when the population mean or total is unknown									
34	Updating Timber Cruises: Re-measure a sample of the plots used in the original cruise and calculate relationship between earlier and later plot volumes.								
	Improving Photo-based Timber Cruises: As photo assessments are fast, cheap, and cover large areas, establish relationship between photo and ground cruise.								
	Improving Cone Count Estimates: Cone counts are ofter used to infer future crops of seed trees but are difficult to do without felling the trees. Relationships between cone count on a cone-bearing branch and total cone count are often used.								
A Transmission	Source: Johnson p811								

Cluster Sampling: Maximize the Cluster Variability								
533.12 Acres	In all sampling methods our goal is to produce an estimate of an inventory where the SE of the mean is as low as possible.							
	To do this: the individual sampling units should contain as much variability as possible \rightarrow large plots that cover large areas							
23	In clusters: we seek to include as much of the variability within each cluster to minimize the variability across the clusters							
This is the opposite goal of stratification!!!								
When we stra	tify we seek to produce homogenous areas then select samples							

С	Cluster Sampling: Calculating the Standard Error										
Symbols: n = number of clusters sampled, N = total number of clusters possible											
	Cluster	1	2	3	4	5	Total		_		
	Seedlings	68	79	82	91	84	404				
$s_{\beta} = \sqrt{\frac{s_{\beta}^2}{n} \left(1 - \frac{n}{N}\right)} \qquad \text{SIE} \qquad \begin{pmatrix} S^2 \\ M \end{pmatrix} \qquad \qquad$											
SE = $\sqrt{[S^2/n * (1 - n/N)]}$ ignore finite population correction = $\sqrt{[70.7/5]}$ = 3.76											

L

