

 1

 IDL Lab #2: What is an IDL Program

 Name:

IDL Lab #2: A Sub-component of FOR 504 Advanced Topics in Remote Sensing

The objectives of this laboratory exercise are to introduce the student to

• A Simple IDL Program
• Introduction to Comments, Procedures, and Functions
• Different Variables in IDL
• The IF Statement

The tasks provided within this lab are designed to help the student better understand the practical
details of programming in IDL and will help you prepare for the class assessment.

If you have problems: ASK!

Location: RS/GIS Lab

Login: XXXX
Password: XXXX

For further reading in this lab exercise, please refer to pages 17-23 (variables) and 90-96
(defining and compiling programs) in Practical IDL Programming, by Liam Gumley, Academic
Press, 2002.

 2

Before you start:

Double click the ENVI icon on the desktop:

This starts both ENVI (The Environment for Visualizing Images) and the IDL (Integrated
Development Language) programming interface

THE COMPONENTS OF A SIMPLE IDL PROGRAM

1. COMMENTS, PROCEDURES, AND FUNCTIONS

In the first lab session, you created a simple program that displayed “Hello World!” on the
screen.

In this lab, we will expand on this program, but organize our code more efficiently.

We will learn the different components that make up an IDL program; including comments,
procedure and functions, variables, and a typical statement.

You will find that you can write IDL programs without the following organizational structure; as
I have done for many years; but it will make your life easier when writing large complex
programs.

Lets us return to the simple Hello World Program:

1 PRO intro
2
3 ;; Two semi-colons allow you to enter comments within the program
4
5 PRINT, ‘Hello World!’
6
7 END

On line 1, IDL is told to look in the current directory and execute the procedure called intro.pro

Now, this example is not an ordinary procedure, but this is how we write simple programs in
IDL.

Normally, you would use a procedure if you wanted to produce more than one output to a query.
For instance, say you had another program called circle_stats that asks this program to give it
both the area and circumference of a circle when providing it with a radius.

If you only wanted one of these results, e.g. the area, then you would normally use a function
instead of a procedure. Try the next two examples to check that each method works:

ENVI 4.0.lnk

 3

Example 1: Using a procedure to get the radius and circumference of a circle

1 PRO circle_stats
2
3 ;; Work out the area and circumference of a radius of user-defined size x
4
5 PRINT, ‘Hello World!’
6
7 x = 2.0
8
9 ;;
10
11 area = (3.14159*x*x)
12 circum = (3.14159*2*x)
13
14 PRINT, ‘The Area of a Circle with Radius’, x, ‘is ‘, area
15 PRINT, ‘The Circumference of a Circle with Radius’, x, ‘is ‘, circum
16
17 END

Example 2: Using 2 Functions to get the radius and circumference of a circle

1 PRO circle_stats, x
2
3 ;; Work out the area and circumference of a radius of user-defined size x
4
5 PRINT, ‘Hello World!’
6
7 x = 2.0
8
9 area = ARE(x)
10 circum = CIR(x)
11
12 PRINT, ‘The Area of a Circle with Radius’, x, ‘is ‘, area
13 PRINT, ‘The Circumference of a Circle with Radius’, x, ‘is ‘, circum
14
15 END
16
17 FUNCTION ARE, dummy
18 RETURN, (3.14159*dummy*dummy)
19 END
20
21 FUNCTION CIR, dummy
22 RETURN, (2*3.14159*dummy)
23 END

 4

You will find that this does not work – This is because you are calling the function BEFORE it is
defined. Put the functions before the procedure and try again.

Note that in the functions you cannot call the variable x; you instead have to choose a ‘dummy’
file name, which could be anything but not a IDL command word.

In addition, you need to write what variables you are receiving in the procedure:

1 FUNCTION ARE, dummy
2 RETURN, (3.14159*dummy*dummy)
3 END
4
5 FUNCTION CIR, dummy
6 RETURN, (2*3.14159*dummy)
7 END
8
9 PRO circle_stats, x
10
11 ;; Work out the area and circumference of a radius of user-defined size x
12
13 PRINT, 'Hello World!'
14
15 ;x = 2.0
16
17 area = ARE(x)
18 circum = CIR(x)
19
20 PRINT, 'The Area of a Circle with Radius', x, 'is ', area
21 PRINT, 'The Circumference of a Circle with Radius', x, 'is ', circum
22
23 END

Although method 2 takes a little longer, splitting your tasks into functions makes it a lot easier to
debug (check) your code when you make a mistake in a very big, complicated program. To enter
variables into IDL before running the program, you only need to type x = ??? at the command
prompt after compiling the program. Then run the program by typing the program name
followed by ‘, x’ into the command prompt:

i.e.
Compile using CTRL F5
IDL> x = 2.0
IDL> circle_stats, x

Similarly, programs with more than one variable can be initiated in the same way:

IDL> a = 2

 5

IDL> b = 10
IDL> prog, a, b

Task #1 Write a program using functions to calculate the area and perimeter of a rectangle using
the length and breadth entered at the IDL prompt.

[Hint: Celsius = (Fahrenheit – 32)*5/9; and Kelvin = 273 + Celsius)

Task #2 Write a program using functions to convert both temperatures from Fahrenheit to
degrees Celsius and Kelvin; and length from miles to kilometers.

[Hint: km = Miles *8/5)

2. VARIABLES

Like other high-level languages, IDL can use several variable types including integers, real
numbers, and strings.

However, unlike languages like C, C++ etc; IDL is more flexible and more importantly you
don’t need to define and fix the variable type at the start of the program.

In IDL you can create variables at any time, which is particularly useful when using dummy
variables as counters; as you don’t need to define them at the very start of the program (which
wastes code and can get confusing if you have multiple counters).

The different types of variables you can use in IDL are listed in Table 2.1:

Note: An unsigned integer is only positive, while a signed integer can be positive or
negative.

Table 2.1 Variable Types in IDL (Modified from Gumley (2002) p18)

Variable Description Range

byte Unsigned Integer 0 to 255
int Signed Integer -32,768 to 32, 767
uint Unsigned Integer 0 to 65,535
long Signed Integer -231 to 231-1
ulong Unsigned Integer 0 to 232-1
long64 Signed Integer -263 to 263-1
ulong64 Unsigned Integer 0 to 264-1
float IEEE floating-point -1038 to 1038-1
double IEEE floating-point -10308 to 10308-1
complex Real-imaginary pair -1038 to 1038-1
dcomplex Real-imaginary pair -10308 to 10308-1

 6

3. The IF Statement

As in most programming languages the IF statement is a very useful tool to master and it is likely
that each program you write from now on will have at least one. They are particularly useful in
functions if the process in the function depends on the input provided.

In this lab, we will just use IF statements in a few simple examples to demonstrate their
functionality:

In summary: the IF statement assess whether a statement of set of statement are true.

In IDL programming you can write the IF statement in different ways. If there were only one
test, you would write:

IF condition THEN statement

OR if you have several actions you want to do after the condition is met you would write:

IF condition THEN BEGIN
 statement(s)
ENDIF

In the scenario that there are two possible conditions for the input – i.e. yes and no; or true and
false; and you want the program, to do something in each case, you would write:

IF condition THEN BEGIN
 statement(s)
ENDIF ELSE BEGIN
 statement(s)
ENDELSE

Examples of conditions for an IF statement include:

IF (X EQ 2) THEN BEGIN ;; EQ = ‘Equals’
IF (Y LT 2) THEN BEGIN ;; LT = ‘Less than’
IF (Z GT 2) THEN BEGIN ;; GT = ‘Greater than’

Task#3 Write a program that prints the phrase ‘very cold’ to a temperature less than -
10°C and ‘very hot’ for a temperature greater than 40°C.

 [Hint: It might be easier in the functions to return an integer and in the main
procedure to take this integer and in another IF function, output the phrase.]

Next week we will introduce Arrays and the FOR loop

	IDL Lab #2: What is an IDL Program
	Before you start:
	
	
	1. 	Comments, Procedures, and Functions
	Example 1:	Using a procedure to get the radius and circumference of a circle
	Example 2:	Using 2 Functions to get the radius and circumference of a circle

