

GRAPHICAL USER INTERFACE (GUI) LAB

This lab will guide you through the complex process of graphical user interface (GUI)
creation. GUI’s are interfaces computer users invoke to make computer programs easier
to use. They provide a graphical means to perform simple and complex operations or
procedures. Computer programmers make most of their applications as GUIs so users are
not required to learn computer programming languages. We each use GUIs on a daily
basis. Any computer program that implements buttons or menus to perform tasks is GUI
based. Some examples include; Microsoft Word, ArcMap, ENVI, S-Plus, etc.

GUIs in IDL
In IDL there are two ways to create GUIs; manual script generation (writing code line by
line as we have done in the previous labs) or semi-automatic script generation (this
process uses a GUI already built into IDL to generate GUIs (this will make more sense
later in the lab)).

Before we create a functional GUI we need to understand basic GUI architecture. GUIs
are comprised of numerous widgets that interact to accomplish a task. Common widgets
used in IDL include the base widget (widget_base), button widgets (widget_button), text
widgets (widget_text), and label widgets (widget_label).

MANUAL GUI CREATION
Let’s create a simple GUI (manually) to display a few basic concepts.

First we must create the base widget (the matrix within which all other widgets in the
GUI are contained).

1. Use the widget_base function to create a base widget by typing the following code in
the IDL editor window.

 ; creates a widget_base called base
 Pro simp_widg

base = widget_base(XSIZE = 175, YSIZE =50, TITLE='A Simple Example')

;realize the widget
widget_control, base, /REALIZE

 end

The XSIZE and YSIZE keywords specify the horizontal and vertical size (in pixels) of
the base widget, while the TITLE keyword creates a title for the widget.

The second line of code invokes the GUI. Running the program should produce a GUI
like this.

2. Add a label to the widget via the widget_label command. Type the following code
between the previous line creating the base widget and the previous line realizing the
widget.

label = widget_label (base, value = 'Hello Widget World')

This line of code adds a text label (named label) to the base widget.
Your program should now look like this:

Pro simp_widg
base = widget_base(XSIZE = 175, YSIZE =50, TITLE='A Simple Example')
label = widget_label (base, value = 'Hello Widget World')
widget_control, base, /REALIZE
end

Running the program should produce a GUI like this.

Task 1. Add a button to the GUI. Make the button text read Goodbye.

HINT: Look at the widget_button function (to create the button), the value keyword
(for the button text), and the x and y offset keywords (for button placement).

SEMI-AUTOMATIC GUI CREATION
As you can see creating a GUI manually could be very time consuming. One could spend
hours experimenting with different widget positions and sizes to make a well designed
GUI. Fortunately IDL (and many other programming platforms) have applications that
allow a user to create GUIs graphically and generate code semi-automatically.

Let’s create the same simple GUI (semi-automatically) to display a few basic concepts.

1. Click NEW GUI button on the IDL menu bar:
This creates a base widget and activates the GUI
Menu bar.

There are numerous widget buttons on the menu bar, including a button widget, a text
widget, and a label widget. Hold your mouse pointer over the different button to see what
they are.

2. Currently the base widget is titled IDL. To change this, we need to edit the base
widget’s properties. In the main IDL window right click on the base widget and select
properties to display the widget property editor.

There are two tabs in the properties window
(Attributes and Events). For now we are only
concerned with the Attributes tab. Change the
widget Name value from WID_BASE_0 to base.
Next find the Title attribute and change it from
IDL to A simple example. Close the properties
dialog. The base widget should now be titled “A
Simple Example”.

3. Add a label to the base widget. This is
accomplished by selecting the label widget
function from the widget menu bar (represented
by the capital letter A). Click on the base widget. A text box containing the word “label”
should appear on the base widget. Drag it to an appropriate position. Open the labels
properties menu (right click and select properties). Change the name attribute to label and
the text value to Hello Widget World. Close the properties menu. The widget should now
be titled A Simple Example and have a label that reads Hello Widget World. Resize the
base widget by dragging the edges.

4. Generate IDL code. In order to run this widget IDL code must be generated. Select the
GUI (UntiltePrc1*) and save it to a new directory (File – Save As). Name it
sim_widg2.prc. To generate IDL code click generate.pro under the IDL file menu. Save
the code to the same directory as the above .prc file. Name it sim_widg2.pro. IDL will
create two new files (sim_widg2.pro and sim_widg2_eventcb.pro). Open both of the new
files. Examine the code in sim_widg2.pro.Portions of the code should look similar to the
code we generated in 1 and 2 above. Compile both files and run sim_widg2.pro. The GUI
should appear.

Task 2. Use the widget menu to add a button to the GUI. Make the button text read
Goodbye.
HINT – use the button widget function and edit its label attribute.

CREATING A FUNCTIONAL GUI.

So far the GUIs you have created in this lab have limited functionality. The remainder of
this lab will teach you how to create a functional GUI. Specifically, you will create a GUI
that reads in an image file and displays it after the user specifies its dimensions and data
type.
5. Create a new GUI and use the widget menu to design a GUI like this:

Helpful hints: Give each widget a unique name in the properties menu. For example
name the Browse button wid_butt_browse, the Display Image button wid_butt_display,
etc. Being consistent with the naming convention you use will make future tasks in this
lab much easier.

In the text widget properties the Editable attribute must be changed from false (the
default) to true.

Under the drop list widget properties add type the words
Byte, Integer, Long, Float, and Double into the initial
values attribute field. It should look like this when you are
done.
Hint: press Ctrl+Enter after typing in a word to start a new
line.

Label Widgets

Button Widgets

Text Widgets

Drop List Widget

6. In order to add functionality to the GUI we need to modify the events properties for
each of the buttons. Click the events tab under the Browse buttons properties menu.
Change the OnPress event value to OnPressBrowse and close the properties menu.
Modify the OnPress event for each of the button widgets. Be sure to use a consistent
naming convention (i.e. OnPressDisplay, OnPressExit, OnPressErase, etc.).

Modifying the OnPress event for each button tells the GUI to execute a program when
the button is pressed. For example, pressing the Exit button tells the GUI to search for
and execute program called OnPressExit, which we will write later in this lab.

After your GUI looks like the one above, and the button OnPress events have been
modified, save the .prc file and generate the program (as in 4. above). The names for each
file should be read_image.prc and read_image.pro. After the program has been geterate
open the read_image.pro and read_image_eventcb.pro files.

7. Examine read_image.pro. Somewhere in the file you will see code that will generate
each widget in the GUI. For example the code used to create the erase button should look
like this:

WID_BUTT_ERASE = Widget_Button(WID_BASE_0, UNAME='WID_BUTT_ERASE' $
 ,XOFFSET=83 ,YOFFSET=122 ,SCR_XSIZE=72 ,SCR_YSIZE=22 $
 ,/ALIGN_CENTER ,VALUE='Erase Display')

This code was automatically generated by IDL based upon the values you entered into the
properties dialog for the erase button.

8. Examine read_image_eventcb.pro. This program is comprised of numerous smaller
programs corresponding to each button event you modified in 6. above. For example, the
program corresponding to the Browse button looks like this:

pro OnPressBrowse, Event

end

Code will need to be added to each event program to make it functional.

Compile both programs and run read_image.pro. Your GUI will appear. However, the
buttons are not yet functional (nothing happens when you press them).

9a. Add code to make each button perform a task. Let’s start with the exit button. Open
read_image_eventcb.pro and locate the following code:

 pro OnPressExit, Event

end

Add the following line of code between the pro and end statements above:

 Widget_Control, event.top, /DESTROY

This code tells IDL to close the topmost widget in the GUI hierarchy. This is the base
widget in the GUI we have created. Compile both programs and run read_image.pro.
Pressing the exit button should cause the GUI to close.

9b. OK that was the easy one. We will now modify the Browse button code so it reads in
an image via the DIALOG_PICKFILE function (see lab 4). Locate the Browse button code
in read_image_eventcb.pro.

pro OnPressBrowse, Event

 end

Modify the code to look like this:

pro OnPressBrowse, Event

;select image file via DIALOG_PICKFILE(see lab 4)
image1 = DIALOG_PICKFILE()

;Set the text box value equal to image location (variable name image1)
FileLocationText = WIDGET_INFO(event.TOP, FIND_BY_UNAME = ‘WID_TEXT_FILE’)
WIDGET_CONTROL, FileLocationText, SET_VALUE = image1

;save variables created so we can pass them to other events
SAVE, /VARIABLES, FILENAME = 'imagebutton_variables.sav'

End

Let’s dissect the above code. The first line (image1 = DIALOG_PICKFILE()) creates a new
variable (image1) and sets it equal to the path of file selected by the user (e.g.,
‘C:\ATRS\IMAGE1’).

The next two lines are used to pass the path name (from the image1 variable) to the text
widget named ‘WID_TEXT_FILE’. A new variable (FileLocationText) containing information
about the ‘WID_TEXT_FILE’ widget is created via the WIDGET_INFO command. As
written, the WIDGET_INFO command searches the base widget (event.TOP) for a widget
with the unique name (UNAME) ‘WID_TEXT_FILE’. Note this name will correspond to the
name you gave the file text widget in step 5 above. The WIDGET_CONTROL command sets
the value attribute of the ‘WID_TEXT_FILE’ widget equal to the image path (the image1
variable). The last line of code saves all the variables created in this portion of the code to
a file named 'imagebutton_variables.sav'. IDL will not pass variables between sections of the
read_imange_eventcb.pro. Saving them to a file will allow us to utilize the same
variables for different buttons on the GUI.

Compile both programs and run read_image.pro. Your GUI will appear. Click on the
browse button and browse the ATRS image we used in lab 3. After selecting the image
the path name should appear the file name text field. The exit button should still work.

9c. Add functionality to the Display Image
Button. Locate the code for the Display
image event button. Modify the code to
look like this:

pro OnPressDisplay, Event

RESTORE, 'imagebutton_variables.sav'

;get user values for image rows
RowWidg = WIDGET_INFO(event.TOP, FIND_BY_UNAME = 'WID_TEXT_ROWS')
WIDGET_CONTROL, RowWidg, GET_VALUE = nrows

; convert nrows variable from string to integer
nrows=FIX(nrows)

;get user values for image columns
ColWidg = WIDGET_INFO(event.TOP, FIND_BY_UNAME = 'WID_TEXT_COLS')
WIDGET_CONTROL, ColWidg, GET_VALUE = ncols

; convert ncols variable from string to integer
ncols=FIX(ncols)

;Read in file
file1 = READ_BINARY (image1, DATA_DIMS=[nrows, ncols], DATA_TYPE = 4)

;Display the image
TV, file1

End

Code dissection:

The RESTORE command restores all variable created by the browse button in step 9b.
The WIDGET_INFO command is used to obtain the number of rows and columns specified
by the user. As in 9b., the code searches for a widget with a unique name (e.g.,
'WID_TEXT_ROWS' for the number of row text widget). The WIDGET_CONTROL command
creates a new variable (e.g., nrows) equal to the user input via the GET_VALUE keyword.
User inputs are automatically set as strings. We want them as integers in our case, so we
convert them from string to integer using the FIX command. The next line of code uses
the READ_BINARY command to read in the file. A new variable (file1) is created. The
image1 variable is equal to the file path name created with the browse button (it was
passed from step 9b. via the SAVE and RSTORE commands. The DATA_DIMS keyword
specifies the number of rows and columns specified by the user (nrows and ncols
variables), and the DATA_TYPE keyword tells IDL the image is an INTEGER array (data
type 4). Finally, the image is displayed in a graphics window using the TV command.

9d. The last guided step will be to make the Erase Display button functional. Locate the
code responsible the Erase Display Button event. Modify it to look like this:

pro OnPressErase, Event

ERASE

End

Compile both programs and run read_image.pro. Your GUI will appear. Click on the
browse button and browse the ATRS image we used in lab 3. After selecting the image
the path name should appear the file name text field. Enter 400 in the Number of rows
text field and 400 in the number of columns text field. Press the Display Image button.
You image should appear in a graphics window. Pressing the Erase Image button should
erase your image. The exit button will exit the GUI. Note – the data type drop down list is
not yet functional.

Task 3. Currently the data type drop down list is not functional. Make it functional.
Create a new variable (or variables) equal to the data type specified by the user.
Pass the value of the variable to the DATA_TYPE keyword in READ_BINARY
command in part 9c. This will not be an easy task as drop lists are the most difficult
widgets to create in IDL. Use the IDL help menu. There are also numerous
programs available on RSI’s website the will help you with this task. Hint see table
below for data type codes.

Type Code Data Type
Type
Code Data Type

0 Undefined 8 Structure

1 Byte 9 Double-precision complex floating

2 Integer (16-bit) 10 Pointer

3 Longword integer (32-bit) 11 Object reference

4 Floating point 12 Unsigned integer (16-bit)

5 Double-precision floating 13 Unsigned longword integer (32-bit)

6 Complex floating 14 64-bit integer

7 String 15 Unsigned 64-bit integer

