

DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO

- Please print your name on the scantron
- Last Name, First Name
- That's all that's needed
- Sit in odd numbered seats.
- Books \& Bags in the front of the room.
- No text entry calculators.
- Use the exams as scratch paper.
- Keep the exams when you are done.
- Turn in the scantrons.

100 total points. Questions 1-18 worth 5.5 points each. Question 19 worth 1 point.

Constants	$\begin{aligned} & \mathrm{R}=8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol} \\ & \mathrm{R}=0.0821 \mathrm{l}-\mathrm{atm} / \mathrm{K}-\mathrm{mol} \end{aligned}$	1 mole $=6.022 \times 10^{23}$	Faraday $=96,500$ coulombs
Chem 111 Equations $q=m C s(\Delta T)$	Gas Equations $u=\sqrt{\frac{3 R T}{M}}$	$\left(\mathrm{P}+\left(\mathrm{n}^{2} \mathrm{a} / \mathrm{V}^{2}\right)\right)(\mathrm{V}-\mathrm{nb})=n R T$	$\mathrm{PV}=\mathrm{nRT}$
Pythagorean Theorem:	$a^{2}+b^{2}=c^{2}$	Volume of a cube:	$V=1^{3}$
Henry's Law	$\mathrm{S}=\mathrm{kH} \mathrm{P}$		
Clausius-Clapeyron Equation	$\ln P=\frac{-\Delta H_{v a p}}{R T}+b$	$\ln \frac{P_{2}}{P_{1}}=\frac{\Delta H_{v a p}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$	
Colligative Properties	$\pi=$ MRT	$\begin{aligned} & P_{A}=P_{A}{ }^{0} X_{A} \\ & \Delta P=P_{A}{ }^{0} X_{B} \end{aligned}$	
	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{m}}$	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{c}_{\mathrm{m}}$	
Chemical Kinetics $\ln [A]_{t}=-k t+\ln [A]_{0}$	$\frac{1}{[A]_{t}}=k t+\frac{1}{[A]_{0}}$	Arrhenius Equation $k=A\left(e^{-\frac{E a}{R T}}\right)$	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Chemical Equilibrium	$\mathrm{aA}+\mathrm{bB}=\mathrm{cC}+\mathrm{dD}$	$K_{C}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$	$K_{p}=K_{c}(R T)^{\Delta n}$
$\begin{aligned} & \mathrm{pH} \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \end{aligned}$	$\begin{aligned} & \text { antilog }(x)=10^{x} \\ & p x=-\log x \end{aligned}$	$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$	Henderson-Hasselbach Eqn $p H=p K_{a}+\log \frac{[\text { base }]}{[\text { acid }]}$
Quadratic formula	$a x^{2}+b x+c=0$	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	
Chemical Thermodynamics	$\Delta U=q+w$	$w=-P \Delta V$	$\Delta G=\Delta H-T \Delta S$
$\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}^{0}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$	$\Delta G=\Delta G^{0}+R T \ln Q$	$\Delta G^{0}=-R T \ln K$	$\Delta G^{0}=-n F E_{\text {cell }}$
Electrochemistry	$E_{\text {cell }}^{0}=E_{\text {cathode }}^{0}-E_{\text {anode }}^{0}$	Nersnt Equation $E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{R T}{n F} \ln Q$	At 298K $E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0592}{n} \log Q$

1																	18
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	2											13	14	15	16	17	
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.0122 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.011 \end{gathered}$	$\underset{\substack{7 \\ \mathbf{N} \\ 14.007}}{ }$	$\begin{gathered} 8 \\ \mathbf{O} \\ 15.999 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.180 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.990 \end{gathered}$	$\begin{gathered} \mathbf{1 2} \\ \mathbf{M g} \\ 24.305 \end{gathered}$	3	4	5	6	7	8	9	10	11	12	$\begin{gathered} 13 \\ \text { Al } \\ 26.982 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.085 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.948 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.098 \end{gathered}$	$\begin{gathered} 20 \\ \text { Ca } \\ 40.078 \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 44.956 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.942 \end{gathered}$	$\begin{gathered} 24 \\ \stackrel{\mathbf{C r}}{ } \\ 51.996 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.938 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55: 845 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.933 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.693 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.546 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.38 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.630 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.922 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.97 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.904 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.798 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R} \mathbf{b} \\ 85.468 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.906 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \end{gathered}$	$\begin{gathered} \stackrel{41}{\mathbf{N b}} \\ 92.906 \end{gathered}$		$\begin{array}{r} 43 \\ \mathrm{Tc} \\ (98) \end{array}$		$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.41 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.71 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.76 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.33 \end{gathered}$	$57-71$	$\begin{gathered} 72 \\ \text { Hf } \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.08 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { T1 } \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{P o} \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89-103 \\ \# \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (265) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (268) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S} \\ (271) \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (277) \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (276) \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ (281) \end{gathered}$	$\begin{gathered} { }_{111} \\ \mathbf{R g} \\ (280) \end{gathered}$	$\begin{gathered} 112 \\ \text { Cn } \\ (285) \end{gathered}$	$\begin{gathered} 113 \\ \mathbf{N h} \\ (286) \end{gathered}$	$\begin{gathered} 114 \\ \text { Fl } \\ (289) \end{gathered}$	$\begin{gathered} 115 \\ \mathbf{M c} \\ (289) \end{gathered}$	$\begin{aligned} & 116 \\ & \mathbf{L V} \\ & (293) \end{aligned}$	$\begin{gathered} 117 \\ \text { Ts } \\ (294) \end{gathered}$	$\begin{gathered} 118 \\ \mathrm{Og} \\ (294) \end{gathered}$
* Lanthanide series			$\begin{gathered} 57 \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{P r} \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	61 Pm (145)	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.93 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.05 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$
\# Actinide series			$\begin{gathered} 89 \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	94 $\mathbf{P u}$ (244)	$\begin{gathered} 95 \\ \underset{(243)}{\mathbf{A m}} \end{gathered}$	96 Cm (247)	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	99 Es (252)	$\begin{gathered} 100 \\ \mathbf{F m} \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \mathbf{M d} \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (262) \end{gathered}$

1] The equilibrium constant is given for two of the reactions below. Determine the value of the missing equilibrium constant.

$$
\begin{array}{ll}
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2} \mathrm{~B}(\mathrm{~g}) & \mathrm{Kc}=? \\
\mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2} \mathrm{~B}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{C}}=16.4 \\
2 \mathrm{~A}(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2} \mathrm{~B}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=28.2
\end{array}
$$

A) 11.8
B) 0.00216
C) 0.582
D) 462
E) 1.72

2] What is Δn for the following equation in relating K_{c} to K_{p} ? ${ }^{2}$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A) 3
B) -1
C) -2
D) 2
E) 1

3] Consider the following reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

A reaction mixture initially contains $0.50 \mathrm{M} \mathrm{CH}_{4}$ and $0.75 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$. If the equilibrium concentration of H_{2} is 0.44 M , which of the following will allow you to find the equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ for the reaction.
a] $K_{c}=\frac{x(4 x)^{4}}{(0.50-x)(0.75-2 x)^{2}} \quad$ where $\mathrm{x}=0.44$
b] $K_{c}=\frac{x(4 x)^{4}}{(0.50-x)(0.75-2 x)^{2}} \quad$ where $\mathrm{x}=0.11$
c] $K_{c}=\frac{x(4 x)}{(0.50-x)(0.75-2 x)} \quad$ where $\mathrm{x}=0.11$
d] $K_{C}=\frac{x(x)^{4}}{(0.50-x)(0.75-x)^{2}} \quad$ where $\mathrm{x}=0.44$
e] $K_{C}=\frac{x(x)^{4}}{(0.50-x)(0.75-x)^{2}} \quad$ where $\mathrm{x}=0.11$

4] Consider the following reaction at equilibrium. What effect will increasing the temperature have on the system?
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-2220 \mathrm{~kJ}$
A) The reaction will shift to the left in the direction of reactants.
B) The reaction will shift to the right in the direction of products.
C) The equilibrium constant will increase.
D) The equilibrium constant will decrease.
E) No effect will be observed.

5] Which of the following species is amphoteric? ${ }^{5}$
A) $\mathrm{CO}_{3}{ }^{2-}$
B) HF
C) $\mathrm{NH}_{4}{ }^{+}$
D) $\mathrm{HPO}_{4}{ }^{2-}$
E) None of the above are amphoteric.

6] Calculate the pH of a solution that contains $7.8 \times 10^{-6} \mathrm{M} \mathrm{OH}^{-}$at $25^{\circ} \mathrm{C}$.
A) 1.28
B) 5.11
C) 12.72
D) 8.89
E) 9.64

7] Which of the following is a weak base? ${ }^{7}$
A) $\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$
B) N_{2}
C) NaOH
D) $\mathrm{CH}_{2} \mathrm{CH}_{2}$
E) None of the above are weak bases.

8] Calculate the pH of a buffer that is $0.225 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.162 \mathrm{M} \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. The Ka_{a} for $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is 1.8×10^{-5}. 8
A) 4.89
B) 9.11
C) 4.60
D) 9.26
E) 4.74

9] Which of the following will allow the calculation the pH when 25.0 mL of 0.100 M acetic acid (HA) is mixed with 25.0 mL of 0.100 M NaOH . $\mathrm{Ka}=1.8 \times 10^{-5} \quad 9$
a] $\left(\mathrm{mol} \mathrm{OH}^{-}\right.$added $)=(\mathrm{mol}$ acid $)$ therefore $\mathrm{pH}=7.00$
b] $\left(\mathrm{mol} \mathrm{OH}^{-}\right.$added $)=(\mathrm{mol}$ acid $)$ therefore use $p H=p K_{a}+\log \frac{[\text { base }]}{[\text { acid }]}$
c] $\left(\mathrm{mol} \mathrm{OH}{ }^{-}\right.$added $)=(\mathrm{mol}$ acid $)$ therefore use $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}$
d] $\left(\mathrm{mol} \mathrm{OH}^{-}\right.$added $)>(\mathrm{mol}$ acid $)$ the pH is pK_{a}
e] $\left(\mathrm{mol} \mathrm{OH}^{-}\right.$added $)<(\mathrm{mol}$ acid $)$ the pH is $1 / 2 \mathrm{pK}_{\mathrm{a}}$.
10] If the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in water is $6.3 \times 10^{-5} \mathrm{M}$ the Ksp for this compound is,
A) 1.0×10^{-12}
B) 5.0×10^{-2}
C) 3.0×10^{-3}
D) 2.6×10^{-13}
E) 9.1×10^{-7}

11] If the pKa of HCHO_{2} is 3.74 and the pH of an $\mathrm{HCHO}_{2} / \mathrm{NaCHO}_{2}$ solution is 3.11 , which of the following is true?
A) $\left[\mathrm{HCHO}_{2}\right]<\left[\mathrm{NaCHO}_{2}\right]$
B) $\left[\mathrm{HCHO}_{2}\right]=\left[\mathrm{NaCHO}_{2}\right]$
C) $\left[\mathrm{HCHO}_{2}\right] \ll\left[\mathrm{NaCHO}_{2}\right]$
D) $\left[\mathrm{HCHO}_{2}\right]>\left[\mathrm{NaCHO}_{2}\right]$
E) $\left[\mathrm{HCHO}_{2}\right]=1 / 2\left[\mathrm{NaCHO}_{2}\right]$

12] Which of the following is true for a spontaneous process?
A) $\Delta \mathrm{H}_{\text {sys }}>0 \& \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}=0$
B) $\Delta \mathrm{E}_{\text {univ }}=\Delta \mathrm{E}_{\text {sys }}+\Delta \mathrm{E}_{\text {surr }}=0 \& \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}>0$
C) $\Delta \mathrm{E}_{\text {univ }}=\Delta \mathrm{E}_{\text {sys }}+\Delta \mathrm{E}_{\text {surr }}>0 \& \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}>0$
D) $\Delta \mathrm{E}_{\text {univ }}=\Delta \mathrm{E}_{\text {sys }}+\Delta \mathrm{E}_{\text {surr }}>0 \& \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}=0$
E) $\Delta \mathrm{E}_{\text {univ }}=\Delta \mathrm{E}_{\text {sys }}+\Delta \mathrm{E}_{\text {surr }}=0 \& \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}<0$

13] \qquad is a thermodynamic function that increases with the number of energetically equivalent ways to arrange components of a system to achieve a particular state. ${ }^{13}$
A) Heat of reaction
B) Free energy
C) Entropy
D) Enthalpy
E) Molar equivalence

14] Place the following in order of increasing entropy at 298 K .
$\mathrm{C}_{2} \mathrm{H}_{6}(g), \mathrm{Pb}(s), \mathrm{Mg}(s), \mathrm{CH}_{4}(g)$
A) $\mathrm{Mg}, \mathrm{Pb}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}$
B) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}, \mathrm{~Pb}, \mathrm{Mg}$
C) $\mathrm{Pb}, \mathrm{Mg}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
D) $\mathrm{Mg}, \mathrm{Pb}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$
E) $\mathrm{Pb}, \mathrm{Mg}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}$

15] For the following example, identify the following. 15 $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) a negative $\Delta \mathrm{H}$ and a negative $\Delta \mathrm{S}$
B) a positive $\Delta \mathrm{H}$ and a negative $\Delta \mathrm{S}$
C) a negative $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$
D) It is not possible to determine without more information.
E) a positive $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$

16] Determine the equilibrium constant for the following reaction at 298 K .
$\mathrm{Cl}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{ClO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{G}^{\circ}=-34.5 \mathrm{~kJ}$
A) 1.12×10^{6}
B) 0.986
C) $8.96 \times 10-7$
D) 4.98×10^{-4}
E) 5.66×10^{5}

17] Consider the following reaction at constant P. Use the information here to determine the value of $\Delta \mathrm{S}_{\text {surr }}$ at 298 K . Predict whether or not this reaction will be spontaneous at this
temperature. $\quad 17$
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+66.4 \mathrm{~kJ}$
A) $\Delta \mathrm{S}_{\text {surr }}=+223 \mathrm{~J} / \mathrm{K}$, reaction is not spontaneous
B) $\Delta \mathrm{S}_{\text {surr }}=-2656 \mathrm{~J} / \mathrm{K}$, reaction is spontaneous
C) $\Delta \mathrm{S}_{\text {surr }}=-223 \mathrm{~J} / \mathrm{K}$, reaction is not spontaneous
D) $\Delta \mathrm{S}_{\text {surr }}=+66.4 \mathrm{~kJ} / \mathrm{K}$, reaction is not spontaneous
E) $\Delta \mathrm{S}_{\text {surr }}=-66.4 \mathrm{~J} / \mathrm{K}$, it is not possible to predict the spontaneity of this reaction without more information.

18] Which $\mathrm{Br} \emptyset$ nsted-Lowry acid is not considered to be a strong acid in water?
A) HI
B) HBr
C) $\mathrm{H}_{2} \mathrm{SO}_{3}$
D) $\mathrm{H} \mathrm{NO}_{3}$
E) HCl

19] My recitation meets at
a) $12: 30 \mathrm{pm}$ on Thursdays
b) blank
c) blank
d) $2: 30 \mathrm{pm}$ on Thursdays

Answers
${ }^{1} \mathrm{E}$
${ }^{2} \mathrm{E}$
${ }^{3} \mathrm{~B} \quad \mathrm{Kc}=0.038$
${ }^{4} \mathrm{~A}$
${ }^{5}$ D
${ }^{6}$ D
${ }^{7}$ A
${ }^{8} \mathrm{C}$
${ }^{9} \mathrm{C}$
${ }^{10} A \quad x=6.3 e-5 ;(2 x) 2 x=K s p=1.0 e-12$
${ }^{11} \mathrm{D}$
${ }^{12} \mathrm{~B}$
${ }^{13} \mathrm{C}$
${ }^{14} \mathrm{D}$
${ }^{15} \mathrm{E}$
${ }^{16} \mathrm{~A}$
${ }^{17} \mathrm{C}$
${ }^{18} \mathrm{C}$

