

		(CLASS	S							TEST.					DATE											
	s c	A N	T R	0 N			ΙT	ΕI	M	Al	NA	٩L	Y	SI	S-	QU Nu		ONS 1-	25 ig resp	onses	FC	RM N	0. 970	2		ORDER	
	83	8.0	69	27	52	32	65	22	51	44	75	64	27	50	29	38	49	4-3	49	43						-	
ı	F O R M S S C O	C L A S S A V E R	1 T E M	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	1
•	R E D	A G E		1																						i [
			cust	OMER SE	RVICE 1	800-SCAN	TRON				-		ED THIS	DIRECTI	ON	_	E 0:	SCANTRON CO	RPORATION 2	011 ALL RIGHT	S RESERVED			EW	1-9702-2: 17		

DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO

- Please print your name on the scantron
 - o Last Name, First Name
 - That's all that's needed
- Sit in odd numbered seats.
- Books & Bags in the front of the room.
- No text entry calculators.
- Use the exams as scratch paper.
- Keep the exams when you are done.
- Turn in the scantrons.

100 total points. Questions 1-18 worth 5.5 points each. Question 19 worth 1 point.

Constants	R = 8.314 J/K-mol	1 mole = 6.022 x 10 ²³	Faraday = 96,500 coulombs
	R = 0.0821 l-atm/K-mol		
Chem 111 Equations	Gas Equations	$(P+(n^2a/V^2))(V-nb)=nRT$	PV = nRT
q = m Cs (ΔT)	$u = \sqrt{\frac{3RT}{M}}$		
Pythagorean Theorem:	$a^2 + b^2 = c^2$	Volume of a cube:	V = 3
Henry's Law	S = k _H P		
Clausius-Clapeyron Equation	$\ln P = \frac{-\Delta H_{vap}}{RT} + b$	$\ln \frac{P_2}{P_1} = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$	
Colligative Properties	$\pi = MRT$	$P_A = P_A{}^0 X_A$	
		$\Delta P = P_A{}^0 X_B$	
	$\Delta T_b = K_b c_m$	$\Delta T_f = K_f C_m$	
Chemical Kinetics	1 , 1	Arrhenius Equation	k. E (1 1)
$ \ln[A]_t = -kt + \ln[A]_0 $	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	$k = A\left(e^{-\frac{Ea}{RT}}\right)$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Chemical Equilibrium	aA + bB = cC + dD	$K_C = \frac{[C]^c [D]^d}{[A]^a [B]^b}$	$K_p = K_c (RT)^{\Delta n}$
рН	antilog(x) = 10 ^x	$K_aK_b = K_w$	Henderson-Hasselbach Eqn
pH = - log [H ⁺]	pX = - log X		$pH = pK_a + \log \frac{[base]}{[acid]}$
Quadratic formula	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
Chemical Thermodynamics	$\Delta U = q + w$	$w = -P\Delta V$	$\Delta G = \Delta H - T \Delta S$
$ln\left(\frac{K_2}{K_1}\right) = \frac{-\Delta H_{rxn}^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$	$\Delta G = \Delta G^0 + RT \ln Q$	$\Delta G^0 = -RT \ln K$	$\Delta G^0 = -nFE_{cell}$
Electrochemistry	$E_{cell}^0 = E_{cathode}^0 - E_{anode}^0$	Nersnt Equation $E_{cell} = E_{cell}^0 - \frac{RT}{nF} \ln Q$	At 298K $E_{cell} = E_{cell}^0 - \frac{0.0592}{n} \log Q$

18	2 He 4.0026	10 Ne 20.180	18 Ar 39.948	36 Kr 83.798	54 Xe 131.29	86 Rn (222)	0g (294)
	17	9 F 18.998	17 CI 35.45	35 Br 79.904	53 I 126.90	85 At (210)	TS TS (294)
	16	8 O 15.999	16 S 32.06	34 Se 78.97	52 Te 127.60	84 Po (209)	116 Lv (293)
	15	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi 208.98	115 Mc (289)
	14	6 C 12.011	Si 28.085	32 Ge 72.630	50 Sn 118.71	82 Pb 207.2	114 F1 (289)
	13	5 B 10.81	13 A1 26.982	31 Ga 69.723	49 In 114.82	81 TI 204.38	113 Nh (286)
			12	30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	Cn Cn (285)
			=	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	Rg (280)
			10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	Ds (281)
			6	27 Co 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (276)
			∞	26 Fe 55.845	44 Ru 101.07	76 Os 190.23	108 Hs (277)
			7	25 Mn 54.938	43 Tc (98)	75 Re 186.21	107 Bh (270)
			9	24 Cr 51.996	42 Mo 95.95	74 W 183.84	Sg (271)
			5	23 V 50.942	41 Nb 92.906	73 Ta 180.95	105 Db (268)
			4	22 Ti 47.867	40 Zr 91.224	72 Hf 178.49	104 Rf (265)
			ĸ	21 Sc 44.956	39 Y 88.906	\$7-71	89-103 #
	2	4 Be 9.0122	12 Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra (226)
-	1.008	3 Li 6.94	11 Na 22.990	19 K 39,098	37 Rb 85.468	55 Cs 132.91	87 Fr (223)

* Lanthanide series	57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
# Actinide series	89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

1] The equilibrium constant is given for two of the reactions below. Determine the value of the missing equilibrium constant.

$$2A(g) + B(g) \rightleftharpoons A_2B(g)$$
 Kc = ?

$$A_2B(g) + B(g) \rightleftharpoons A_2B_2(g)$$
 $K_C = 16.4$

$$2A(g) + 2B(g) \rightleftharpoons A_2B_2(g)$$
 $K_C = 28.2$

- A) 11.8
- B) 0.00216
- C) 0.582
- D) 462
- E) 1.72
- 2] What is Δn for the following equation in relating K_C to K_D ?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

- A) 3
- B) -1
- C) -2
- D) 2
- E) 1
- 3] Consider the following reaction:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

A reaction mixture initially contains 0.50 M CH₄ and 0.75 M H₂S. If the equilibrium concentration of H₂ is 0.44 M, which of the following will allow you to find the equilibrium constant (K_C) for the reaction.

a]
$$K_c = \frac{x(4x)^4}{(0.50-x)(0.75-2x)^2}$$
 where x = 0.44

b]
$$K_c = \frac{x(4x)^4}{(0.50-x)(0.75-2x)^2}$$
 where x = 0.11

c]
$$K_c = \frac{x(4x)}{(0.50-x)(0.75-2x)}$$
 where x = 0.11

d]
$$K_c = \frac{x(x)^4}{(0.50-x)(0.75-x)^2}$$
 where x = 0.44

e]
$$K_C = \frac{x(x)^4}{(0.50-x)(0.75-x)^2}$$
 where x = 0.11

4] Consider the following reaction at equilibrium. What effect will increasing the temperature have on the system? 4
$C_3H_8(g) + 5 O_2(g) \rightleftharpoons 3 CO_2(g) + 4 H_2O(l)$ $\Delta H^\circ = -2220 \text{ kJ}$
A) The reaction will shift to the left in the direction of reactants.
B) The reaction will shift to the right in the direction of products.
C) The equilibrium constant will increase.
D) The equilibrium constant will decrease.
E) No effect will be observed.
5] Which of the following species is amphoteric? 5
A) CO ₃ 2-
B) HF
C) NH ₄ ⁺
D) HPO₄2-
E) None of the above are amphoteric.
6] Calculate the pH of a solution that contains 7.8×10^{-6} M OH ⁻ at 25°C.
A) 1.28
B) 5.11
C) 12.72
D) 8.89
E) 9.64
7] Which of the following is a weak base? ⁷
A) NH(CH ₃) ₂
B) N ₂
C) NaOH
D) CH ₂ CH ₂
E) None of the above are weak bases.
8] Calculate the pH of a buffer that is 0.225 M HC ₂ H ₃ O ₂ and 0.162 M KC ₂ H ₃ O ₂ . The K_a for
$HC_2H_3O_2$ is 1.8×10^{-5} .
A) 4.89
B) 9.11
C) 4.60
D) 9.26
E) 4.74

9] Which of the following will allow the calculation the pH when 25.0 mL of 0.100 M acetic acid (HA) is mixed with 25.0 mL of 0.100 M NaOH. Ka = 1.8×10^{-5}

- a] (mol OH^{-} added) = (mol acid) therefore pH = 7.00
- b] (mol OH⁻ added) = (mol acid) therefore use $pH = pK_a + \log \frac{[base]}{[acid]}$
- c] (mol OH⁻ added) = (mol acid) therefore use A⁻ + H₂O \rightleftharpoons HA + OH⁻
- d] (mol OH- added) > (mol acid) the pH is pKa
- e] (mol OH $^{-}$ added) < (mol acid) the pH is $\frac{1}{2}$ pK_a.

10] If the solubility of Ag_2CrO_4 in water is 6.3 x 10^{-5} M the Ksp for this compound is,

10

- A) 1.0 x 10⁻¹²
- B) 5.0×10^{-2}
- C) 3.0×10^{-3}
- D) 2.6 x 10⁻¹³
- E) 9.1 x 10⁻⁷

11] If the pKa of HCHO₂ is 3.74 and the pH of an HCHO₂/NaCHO₂ solution is 3.11, which of the following is **true**?

12

- A) [HCHO₂] < [NaCHO₂]
- B) $[HCHO_2] = [NaCHO_2]$
- C) [HCHO₂] << [NaCHO₂]
- D) $[HCHO_2] > [NaCHO_2]$
- E) [HCHO₂] = ½ [NaCHO₂]

12] Which of the following is true for a spontaneous process?

A)
$$\Delta H_{sys} > 0 \& \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$$

B)
$$\Delta E_{univ} = \Delta E_{sys} + \Delta E_{surr} = 0 \& \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

C)
$$\Delta E_{univ} = \Delta E_{sys} + \Delta E_{surr} > 0 \& \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

D)
$$\Delta E_{univ} = \Delta E_{sys} + \Delta E_{surr} > 0 \& \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$$

E)
$$\Delta E_{univ} = \Delta E_{sys} + \Delta E_{surr} = 0 & \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} < 0$$

13] is a thermodynamic function that increases with the number	r of energetically
equivalent ways to arrange components of a system to achieve a particula	r state. ¹³
A) Heat of reaction	
B) Free energy	
C) Entropy	
D) Enthalpy	
E) Molar equivalence	
14] Place the following in order of increasing entropy at 298 K. $C_2H_6(g)$, $Pb(s)$, $Mg(s)$, $CH_4(g)$	14
A) Mg, Pb, C ₂ H ₆ , CH ₄	
B) C ₂ H ₆ , CH ₄ , Pb, Mg	
C) Pb, Mg, CH4, C ₂ H ₆	
D) Mg, Pb, CH4, C ₂ H ₆	
E) Pb, Mg, C ₂ H ₆ , CH ₄	
15] For the following example, identify the following. 15	
$H_2O(I) \rightarrow H_2O(g)$	
A) a negative ΔH and a negative ΔS	
B) a positive ΔH and a negative ΔS	
C) a negative ΔH and a positive ΔS	
D) It is not possible to determine without more information.	
E) a positive ΔH and a positive ΔS	
16] Determine the equilibrium constant for the following reaction at 298 K	 16
$Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g)$ $\Delta G^{\circ} = -34.5 \text{ kJ}$	
A) 1.12×10^6	
В) 0.986	
C) 8.96×10^{-7}	
D) 4.98 × 10 ⁻⁴	
E) 5.66 × 10 ⁵	

17] Consider the following reaction at constant P. Use the information here to determine the value of ΔS_{SUTT} at 298 K. Predict whether or not this reaction will be spontaneous at this temperature.

$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

$$\Delta H = +66.4 \text{ kJ}$$

- A) ΔS_{surr} = +223 J/K, reaction is not spontaneous
- B) $\Delta S_{surr} = -2656 \text{ J/K}$, reaction is spontaneous
- C) $\Delta S_{surr} = -223 \text{ J/K}$, reaction is not spontaneous
- D) $\Delta S_{SUrr} = +66.4 \text{ kJ/K}$, reaction is not spontaneous
- E) ΔS_{surr} = -66.4 J/K, it is not possible to predict the spontaneity of this reaction without more information.

18] Which Brønsted-Lowry acid is **not** considered to be a strong acid in water?

- A) HI
- B) HBr
- C) H₂SO₃
- D) H NO₃
- E) HCl

19] My recitation meets at

- a) 12:30 pm on Thursdays
- b) blank
- c) blank
- d) 2:30 pm on Thursdays

Answers