```
Answers
```

1] b 2] d 3] a 4] A 5]A 6]A 7]B 8]D 9]B 10] D 11] B 12] E 13]D 14] E 15]A

18	2 He 4.0026	10 Ne 20.180	18 Ar 39.948	36 Kr 83.798	54 Xe 131.29	86 (222) (222)	118 Og (294)	71 Lu 174.97	103 Lr (262)
	17	9 F 18.998	17 CI 35.45	35 Br 79.904	53 I 126.90	85 At (210)	117 Ts (294)	70 Yb 173.05	102 No (259)
	16	8 0 15.999	16 S 32.06	34 Se 78.97	52 Te 127.60	84 Po (209)	116 Lv (293)	69 Tm 168.93	101 Md (258)
	15	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi 208.98	115 Mc (289)	68 Er 167.26	100 Fm (257)
	14	6 C 12.011	14 Si 28.085	32 Ge 72.630	50 Sn 118.71	82 Pb 207.2	114 Fl (289)	67 Ho 164.93	99 Es (252)
	13	5 B 10.81	13 Al 26.982	31 Ga 69.723	49 In 114.82	81 TI 204.38	113 Nh (286)	66 Dy 162.50	Cf (251) 08
			12	30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)	65 Tb 158.93	97 Bk (247)
			=	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	111 Rg (280)	64 Gd 157.25	96 Cm (247)
			10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	110 Ds (281)	63 Eu 151.96	95 Am (243)
			6	27 Co 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (276)	62 Sm 150.36	94 Pu (244)
			8	26 Fe 55.845	44 Ru 101.07	76 Os 190.23	108 Hs (277)	61 Pm (145)	93 Np (237)
			7	25 Mn 54.938	43 Tc (98)	75 Re 186.21	107 Bh (270)	60 Nd 144.24	92 U 238.03
			9	24 Cr 51.996	42 Mo 95.95	74 W 183.84	106 Sg (271)	59 Pr 140.91	91 Pa 231.04
			5	23 V 50.942	41 Nb 92.906	73 Ta 180.95	105 Db (268)	58 Ce 140.12	90 Th 232.04
			4	22 Ti 47.867	40 Zr 91.224	72 Hf 178.49	104 Rf (265)	57 La 138.91	89 Ac (227)
			3	21 Sc 44.956	39 Y 88.906	57-71 *	89-103 #	anide	s
	5	4 Be 9.0122	12 Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra (226)	* Lantl seri	# Actin serie:
-	\mathbf{H}^{1} 1.008	3 Li 6.94	11 Na 22.990	19 K 39.098	37 Rb 85.468	55 Cs 132.91	87 Fr (223)		

R = 8.314 J/K-mol = 0.0821 l-atm/K-mol

$$\ln P = \frac{-\Delta H_{vap}}{RT} + b \qquad u = \sqrt{\frac{3RT}{M}}$$

DO NOT OPEN THIS EXAM UNTIL YOU ARE INSTRUCTED TO DO SO

- Please print your name on the scantron
 - o Last Name, First Name
 - o That's all that's needed
- Sit in odd numbered seats.
- Books & Bags in the front of the room.
- No text entry calculators.
- Use the exams as scratch paper.
- Keep the exams when you are done.
- Turn in the scantrons.

100 total points. Questions 1-15 worth 6.5 points each. Question 16 worth 2.5 points.

- **1.** One mole of H₂S gas escapes from a container by effusion in 77 seconds. How long would it take for one mole of NH₃ gas to escape from the same container?
 - a) 38.5 sec
 b) 54 sec
 c)154 sec
 d) 109 sec
 e) 122 sec
- **2.** Air in a sealed container is heated from 25 °C to 36 °C. If the initial pressure is 3.80 atm, what is the final pressure?
 - a) 2.64 atm
 - b) 5.48 atm
 - c) 3.77 atm
 - d) 3.94 atm
 - e) 3.03 atm
- **3.** A 6.60 g sample of a gaseous compound occupies a volume of 1.20 L at 27 ^oC and 0.967 atm. What is molecular weight of this compound?
 - a) 140 g/mol b) 165 g/mol c) 152 g/mol d) 109 g/mol e) 123 g/mol

- C) C
- D) D

E) All of the gases have the same density at STP.

5. A mixture of 10.0 g of Ne and 10.0 g Ar have a total pressure of 1.6 atm. What is the partial pressure of Ne?

- A) 1.1 atm B) 0.80 atm C) 0.54 atm
- D) 0.40 atm
- E) 1.3 atm

6. A mixture of 1.0 mol He and 1.0 mol Ne are at STP in a rigid container. Which of the following statements is true?

A) Both gases have the same average kinetic energy.

- B) Both gases contribute equally to the density of the mixture under these conditions.
- C) Both gases have the same molecular speed.
- D) The mixture has a volume of 22.4 L
- E) All of the above are true.

7. Which one of these will diffuse the fastest at 25°C?

- A) 2.0 M Ar
- B) 1.0 M H₂
- C) 2.0 M N₂
- D) 0.5 M Ne
- E) 2.0 M O₂

8. A container holds 3.0 g of hydrogen. If it is evacuated and filled with methane, CH₄, at the same temperature and pressure, what mass of methane does it now hold?

Atomic Molar Masses							
С	12.0 g·mol ⁻¹						
Н	1.0 g·mol ^{−1}						

(A) 16 g (B) 19 g (C) 22.4 g (D) 24 g (E) 48 g

9. The STRONGEST intermolecular forces between molecules of NH_3 are

- a. ionic bonds.
- b. hydrogen bonds.
- c. ion–dipole attractions.
- d. London forces.
- e. covalent bonds.

10. The mass of 560 cm³ (STP) of an unknown gas is 1.60 g. This gas could be

	Molar Masses							
	CO ₂	44. g·mol ^{−1}						
	Cl ₂	71. g·mol ^{−1}						
	0 ₂	32. g·mol ^{−1}						
	SO ₂	64. g·mol ^{−1}						
(A)	oxygen.		(C)	chlorine.				
(B)	carbon diox	kide.	(D)	sulfur dioxide.				

11. Choose the substance with the lowest surface tension.

A) CH₃OH
B) CH₃CH₂CH₂CH₂CH₃
C) CH₃CH₂OH
D) H₂O
E) (CH₃)₂CO

12. Place the following substances in order of **increasing** boiling point.

CH₃CH₂OH He CH₃OCH₃

A) He < CH₃CH₂OH < CH₃OCH₃
B) CH₃CH₂OH < He < CH₃OCH₃
C) CH₃CH₂OH < CH₃OCH₃ < He
D) CH₃OCH₃ < He < CH₃CH₂OH
E) He < CH₃OCH₃ < CH₃CH₂OH

13. Given that the boiling point of liquid is $166 \, {}^{0}$ C which of the following would be of most help for the calculation of its vapor pressure at 133 0 C.

- a) The Heat of Fusion
- b) The Heat of Sublimation
- c) The Heat of Ionization
- d) The Heat of Condensation
- e) The Heat of Racemization

14. Identify the compound that has hydrogen bonding.

- A) (CH₃)₃N
- B) N2
- C) CH₃CH₃
- D) HI
- E) NH₃

15. Choose the pair of substances that are most likely to form a homogeneous solution.

- A) C₆H₁₄ and C₁₀H₂₀
- B) KCl and C₅H₁₂
- C) N2O4 and NH4I
- D) C_6H_{14} and H_2O
- E) None of the pairs above will form a homogeneous solution.

16. My recitation meets at

- a) 12:30 pm on Thursdays
- b) 2:30 pm on Thursdays