

$$
\text { Average }=79, \text { Median }=79, \text { Std Dev }=17.9
$$

1] If K_{a} for HA is 5.0×10^{-6}, what is K_{b} for A^{-}? ${ }^{1}$

2] What is the solubility of PbCl_{2} ? $\left(\mathrm{K}_{\text {sp }}=1.7 \times 10^{-5}\right)^{2}$
3] What is solubility of AgCl in 0.10 M NaCl ? $\left(\mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}\right)^{3}$
4] What is the pH of 0.10 M phenylacetic acid? $\left(\mathrm{K}_{\mathrm{a}}=4.90 \times 10^{-5}\right)^{4}$

5] Calculate $K_{\text {sp }}$ of a salt $M X$ that has a measure solubility of $1.0 \times 10^{-7} \mathrm{M} .{ }^{5}$
6] Calculate $\left[\mathrm{H}^{+}\right]$of a solution that at $\mathrm{pH} 7.889 .{ }^{6}$

7] You need to deliver 5.00 mL of pH buffer to a microbiological experiment. Which device would allow you to do this with most accuracy? ${ }^{7}$
a) 5-mL graduated cylinder
b) $10-\mathrm{mL}$ class A buret
c) 5-mL class A buret
d) $5-\mathrm{mL}$ class A pipet
e) 5-mL class A volumetric flask

8] Calculate pH of a solution that has $\left[\mathrm{H}^{+}\right]=7.889 \times 10^{-3} \mathrm{M} .{ }^{8}$
9] A concentrated nitric acid has a density of $1.42 \mathrm{~g} / \mathrm{mL}$ is 70.0% by mass. What is its concentration in molarity? $(\mathrm{MW}=63.01 \mathrm{~g} / \mathrm{mol})^{9}$

10] Given that the signal (y) follows as $y=m x+b$, where x is concentration how is the detection limit defined? Let s represent the standard deviation in the signal measure for $b{ }^{10}$

11] What is the relative population of above the value of 75.0 for a Gaussian distribution whose mean is 45.0 with a standard deviation of 15.0 ? ${ }^{11}$

12] What are the 90% confidence limits for 5 samples whose mean was measure as $102 \mathrm{mg} / \mathrm{dL}$ with a standard deviation of $11 \mathrm{mg} / \mathrm{dL}$? ${ }^{12}$

13] Which of the following data points may be discarded with 90% confidence? ${ }^{13}$
$1.053,1.060,1.059,1.070,1.058 \mathrm{ppm}$
14] The molality of a solution of a salt solution $M X$ is 1.50 . What is it's concentration in mass/mass $\%$ if the MW of the salt is 100.0 ? ${ }^{14}$

Answers

5

$$
M X=\begin{aligned}
& M^{n+} \\
& X
\end{aligned} \quad+\quad \begin{aligned}
& X^{n-} \\
& X
\end{aligned}
$$

$$
x^{2}=K_{s p}=1.0 e-7^{2}=1.0 e-14
$$

ans. b
${ }^{6} \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad\left[\mathrm{H}^{+}\right]=1.29 \mathrm{e}-8 \mathrm{M} \quad 3$ s.f.
ans. d also ans. c was given full credit
${ }^{8} \mathrm{pH}=-\log (7.889 \mathrm{e}-3)=2.1030 \mathrm{M} 4$ s.f.
ans. e
$970.0 \mathrm{~g} \mathrm{HNO}_{3} / 100 \mathrm{~g}$ solution * 1.42 g soln/ $0.001 \mathrm{~L} * \mathrm{~mol} / 63.01 \mathrm{~g}=15.8 \mathrm{M}$
${ }^{10} \mathrm{LOD}=3 \mathrm{~s} / \mathrm{m}$
ans. a
${ }^{11} z=\frac{x-\mu}{s}=75-45 / 15=2 \quad$ or just recognize that you are at 2 s at 75.
from z-table area $=0.4773 \quad$ area above $75=0.50000-0.4773=0.0227$ or 2.27%
ans. d

12 d.f. = 4, use t-table @ 90\% c.l. t = 2.132

$$
\mu=x^{-} \pm \frac{t \sigma}{\sqrt{n}}=102 \pm \frac{2.132(11)}{\sqrt{5}}=102 \pm 10 \mathrm{mg} / \mathrm{dL}
$$

ans. d
$131.053,1.060,1.059,1.070,1.058$
$\mathrm{Q}=1.070-1.060 / 1.070-1.053=0.588$
Q table $=0.64$
The data should be retained
ans. a
${ }^{14}$ Calculate the mass of 1.50 mol of MX . $\quad 1.50 \mathrm{~mol} * 100.0 \mathrm{~g} / \mathrm{mol}=150 \mathrm{~g}$ of MX now calculate m / m \%
$150 \mathrm{~g} /(1000 \mathrm{~g}+150 \mathrm{~g}) * 100=13.0 \%$
ans. c

