

Chem 253 – Exam 1 – September 17, 2014

Average = 79, Median = 79, Std Dev = 17.9

- 1] If K_a for HA is $5.0\times 10^{-6},$ what is K_b for A ? 1
- 2] What is the solubility of PbCl₂? ($K_{sp} = 1.7 \times 10^{-5}$)²
- 3] What is solubility of AgCl in 0.10 M NaCl? ($K_{sp} = 1.8 \times 10^{-10}$)³
- 4] What is the pH of 0.10 M phenylacetic acid? (K_a = 4.90 \times 10 $^{-5}$) 4
- 5] Calculate K_{sp} of a salt MX that has a measure solubility of 1.0×10^{-7} M. 5
- 6] Calculate [H⁺] of a solution that at pH 7.889. 6

7] You need to deliver 5.00 mL of pH buffer to a microbiological experiment. Which device would allow you to do this with most accuracy? 7

- a) 5-mL graduated cylinder
- b) 10-mL class A buret
- c) 5-mL class A buret
- d) 5-mL class A pipet
- e) 5-mL class A volumetric flask

8] Calculate pH of a solution that has $[H^+] = 7.889 \times 10^{-3} \text{ M}.^{8}$

9] A concentrated nitric acid has a density of 1.42 g/mL is 70.0% by mass. What is its concentration in molarity? (MW = $63.01 \text{ g/mol})^9$

10] Given that the signal (y) follows as y = mx + b, where x is concentration how is the detection limit defined? Let s represent the standard deviation in the signal measure for b.¹⁰

11] What is the relative population of above the value of 75.0 for a Gaussian distribution whose mean is 45.0 with a standard deviation of 15.0? ¹¹

12] What are the 90% confidence limits for 5 samples whose mean was measure as 102 mg/dL with a standard deviation of 11 mg/dL?¹²

13] Which of the following data points may be discarded with 90% confidence?¹³

1.053, 1.060, 1.059, 1.070, 1.058 ppm

14] The molality of a solution of a salt solution MX is 1.50. What is it's concentration in mass/mass % if the MW of the salt is 100.0? 14

Answers

v

5

$$MX = M^{n+} + X^{n-}$$

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

 x
 x

⁹ 70.0 g HNO₃/100 g solution * 1.42 g soln/0.001 L * mol/63.01 g = 15.8 M ans. c

¹¹
$$z = \frac{x - \mu}{s} = 75 - 45 / 15 = 2$$
 or just recognize that you are at 2s at 75.

from z-table area = 0.4773 area above 75 = 0.50000 – 0.4773 = 0.0227 or 2.27% ans. d

$$\mu = x \pm \frac{t\sigma}{\sqrt{n}} = 102 \pm \frac{2.132(11)}{\sqrt{5}} = 102 \pm 10 \text{ mg/dL}$$
 ans. d

¹³ 1.053, 1.060, 1.059, 1.070, 1.058

Q = 1.070 - 1.060 / 1.070 - 1.053 = 0.588Q table = 0.64 The data should be retained

ans. a

ans. c

¹⁴ Calculate the mass of 1.50 mol of MX. 1.50 mol * 100.0 g/mol = 150 g of MX now calculate m/m %