Frequency

Avg = 69, Med = 73, σ = 15

A: 100-82%, B: 81-67%, C: 66-57% D: 56-45%, F: less than 45%

Avg = 2.6, σ = 1.2

1] A solution of 0.100 M AgNO₃ is used to titrate a 100.00 mL solution of 0.100 M KCl. The K_{sp} of AgCl is 1.8e-10. What is pAg if 50.00 mL of the titrant is added to the KCl solution?¹

2] What is the concentration Cl⁻ required to remove 97% of Ag⁺ in a solution of 0.100 F AgNO₃? $^{\rm 2}$

3] What term best explains the solubility of CaF₂? ($pK_{sp} = 10.41$)³

4] What is the pH of NaHA given the following? ⁴

 $H_2A = HA^- + H^+$ $K_{a1} = 6.1e-4$

$$HA^{-} = H^{+} + A^{2-}$$
 $K_{a2} = 1.1e-9$

5] The K_{sp} of BaSO₄ is 4.3e-11. The pK_{a2} of H_2SO_4 is 1.99. What would you expect with BaSO₄ molar solubility and between pH 5 and 10? ⁵

a) The molar solubility decreases with pH

- b) The molar solubility increases with pH
- c) The molar solubility increases from 5 to 6.5 then decreases from 6.5 to 10.
- d) The molar solubility is constant.
- e) The molar solubility decreases from 5 to 6.5 then increases from 6.5 to 10.

6] What is the mass balance equation for 0.1 M NaHCO₃? Note for $H_2CO_3 pK_{a1} = 6.352$, and $pK_{a2} = 10.329$. ⁶

7] The weak acid, H₂A has K_{a1} = 1.0e-4 and K_{a2} = 1.0e-8. The fraction, $\alpha_{A^{2-}}$ at pH 7.00 can be calculated from which of the following?⁷

$$\frac{[H^+]^2}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$$

$$\frac{K_{a1}K_{a2}}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$$

$$\frac{K_{a1}[H^+]}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$$

$$\frac{K_{a1}K_{a2}[H^+]^2}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$$

$$\frac{K_{a1}K_{a2}[H^+]}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$$

8] What is the pH of a solution containing 0.10 M NaA and 0.10 M HA? K_a = 1.0 x $10^{\text{-5}}$ $^{\text{8}}$

9] How many milliliters of 1.0 M NaOH must be added to 1.0 L of 0.20 M NH₄Cl to produce a buffer at pH 10? $K_a = 5.7 \times 10^{-10}$ ⁹

10] What is the pH of a titration solution that is a combination of 10.00 mL of 0.100 M H₂A and 15.00 mL of 0.100 M NaOH? $K_{a1} = 1.00 \times 10^{-3}$, $K_{a2} = 1.00 \times 10^{-6}$ ¹⁰

11] What is the pH of a titration solution that is a combination of 10.00 mL of 0.100 M H₂A and 25.00 mL of 0.100 M NaOH? K_{a1} = 1.00 x 10⁻³, K_{a2} = 1.00 x 10⁻⁶ ¹¹

12] What is the pH of a titration solution that is a combination of 10.00 mL of 0.100 M H₂A and 10.00 mL of 0.100 M NaOH? $K_{a1} = 1.00 \times 10^{-3}$, $K_{a2} = 1.00 \times 10^{-6}$ ¹²

13] What is the pH of a titration solution that is a combination of 10.00 mL of 0.100 M H₂A and 20.00 mL of 0.100 M NaOH? $K_{a1} = 1.00 \times 10^{-3}$, $K_{a2} = 1.00 \times 10^{-6}$ ¹³

14] What is the fraction of EDTA at Y^{4-} at pH 7? ¹⁴

15] What is the charge balance equation for a solution containing Na₂SO₄ and HCl? You may ignore K_w . ¹⁵

Answers

¹ Titration Rxn: Ag⁺ + Cl⁻ \rightleftharpoons AgCl(s) Mol of Ag⁺ = 0.05000 L * 0.100 M AgNO₃ = 5.00e-3 Mol of Cl⁻ = 0.10000 L * 0.100 M KCl = 1.00e-2 Rxn: Ag⁺ + Cl⁻ ≓ AgCl(s) 5.00e-3 1.00e-2 ---5.00e-3 -5.00e-3 --- $[Cl^{-}] = 5.00e-3 \text{ mol } Cl^{-} / 0.1500 \text{ L} = 3.33e-2$ AgCl(s) \rightleftharpoons Ag⁺ Cl⁻ + -х x+3.33e-2 $x(3.33e-2) \cong 1.8e-10$ x = 5.4e-9 M pAg = 8.27² [Ag⁺] = (1-0.97) 0.100 F = 3.00e-3 M K_{sp} = [Ag⁺][Cl⁻] = 1.8e-10 = 3.00e-3 M^{*}[Cl⁻] → [Cl⁻] = 6.0e-8 M

³ [Ca²⁺]

⁴ pH = ½(pKa1 + pKa2) pKa1 = -log(6.1e-4) = 3.21 pKa2 = -log(1.1e-9) = 8.96 pH = 6.09

⁵ Molar Solubility stays constant as the predominate form of sulfate is SO_4^{2-} in this pH range. SO_4^{2-} doesn't hydrolyze as it's the conjugate base of a strong acid.

⁶ initial $[Na^+] = [HCO_3^-]$ then consider hydrolysis $HCO_3^- = H^+ + CO_3^=$ $HCO_3^- + H_2O = H_2CO_3 + OH^$ final $[Na^+] = [H_2CO_3] + [HCO_3^-] + [CO_3^=]$ 7 $\frac{K_{a1}K_{a2}}{[H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}}$

⁸ K_a =
$$[H^+][A^-] / [HA]$$
 1.0 x 10⁻⁵ = $[H^+] 0.10 / 0.10$ $[H^+] = 1.0e-5$ pH = 5.00

⁹ Find pH using $K_a = [H^+][NH_3] / [NH_4^+]$ [H⁺] = 1.0e-10

initial mol NH_4^+ = 0.20 M*1.0 L = 0.20 mol

Rxn	$NH_4^+ +$	OH-	=	NH_3	+	H ₂ O	
	0.20 mol	х		0			
	<u>-X</u>	-X		+χ			
	0.20-x	0		х			

 $K_a = [H^+][NH_3] / [NH_4^+] = 5.7e-10 = 1.0e-10 x / (0.20-x)$

x = 0.030 mol OH- requires 0.170 L

¹⁰ initial mol $H_2A = 10.00*0.100 = 1.00$ mmol

added mol NaOH = 15.00*0.100 = 1.50 mmol Past the 1st eq. pt. excess OH- = 0.50 mmol A²⁻ HA⁻ OH-= H₂O + + 1.00 0.50 mmol 0 --+<u>0.50 mmol</u> -0.50 -0.50 mmol 0.50 0 0.50 mmol buffer system $[HA^{-}] = [A^{2-}] = 0.50 \text{ mmol} / 25.00 \text{ mL}$ $K_{a2} = 1.00e-6 = [H^+] [A^2-] / [HA-]$ = [H⁺]

¹¹ past 2^{nd} eq. pt. initial mol H₂A = 10.00*0.100 = 1.00 mmol

added mol NaOH = 25.00*0.100 = 2.50 mmol

excess OH⁻ = 0.50 mmol

[OH⁻] = 0.50 mmol / 35.00 mL = 1.43e-2 M

pOH = 1.845 pH = 12.15

¹² initial mol H_2A = added mol OH^- first eq. pt.

[HA⁻] = 1.000 mmol / 20.00 mL = 5.000e-2 M

Amphoteric Species

 $HA^{-} + H_2O = H_2A + OH^{-}$ & $HA^{-} = H^{+} + A^{2-}$ $pH = \frac{1}{2} (pK_{a1} + pK_{a2}) = \frac{1}{2} (3.000 + 6.000) = 4.500$

¹³ 2 eq. pt.

Initial mol H₂A = 10.00 mL*0.100 M = 1.00 mmol

Added OH⁻ = 20.00 mL*0.100 M = 2.00 mmol

This is the 2nd eq. pt.

So [A²⁻] = 1.00 mmol / 30.00 mL = 3.33e-2 M

Now must consider:

	A ²⁻	+	H ₂ O	=	HA⁻	+	OH	
	3.33e-2 M				0		0	
	<u>-X</u>				+χ		+ <u>x</u>	
	3.33e-2 M – x						x	
$K_b = K_w/K_{a2} = 10^{-14}/1.00 \times 10^{-6} = [x^2] / 3.33e-2 M$					x = 1.82e-5 = [OH ⁻] pH = 9.261			

¹⁴ 3.8e-4 see the attached Table

¹⁵ $[Na^+] + [H^+] = 2 [SO_4^{2-}] + [Cl^-]$