Frequency

Avg $=57.4 \quad$ Med $=61 \quad$ Std. Dev. $=19.9 \quad$ High $=94$

Avg $=69, \operatorname{Med}=73, \sigma=15$
A: $100-82 \%, B: 81-67 \%, C: 66-57 \%$ D: $56-45 \%$, F: less than 45%

Avg $=2.6, \sigma=1.2$

1] A solution of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$ is used to titrate a 100.00 mL solution of 0.100 M KCl . The $\mathrm{K}_{\text {sp }}$ of AgCl is $1.8 \mathrm{e}-10$. What is pAg if 50.00 mL of the titrant is added to the KCl solution? ${ }^{1}$

2] What is the concentration Cl^{-}required to remove 97% of Ag^{+}in a solution of $0.100 \mathrm{~F} \mathrm{AgNO}_{3}$? 2

3] What term best explains the solubility of CaF_{2} ? $\left(\mathrm{pK}_{\mathrm{sp}}=10.41\right)^{3}$
4] What is the pH of NaHA given the following? ${ }^{4}$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A}=\mathrm{HA}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=6.1 \mathrm{e}-4 \\
\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} & \mathrm{K}_{\mathrm{a} 2}=1.1 \mathrm{e}-9
\end{array}
$$

5] The $\mathrm{K}_{\text {sp }}$ of BaSO_{4} is $4.3 \mathrm{e}-11$. The $\mathrm{pK}_{\mathrm{a} 2}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 1.99. What would you expect with BaSO_{4} molar solubility and between pH 5 and 10 ? ${ }^{5}$
a) The molar solubility decreases with pH
b) The molar solubility increases with pH
c) The molar solubility increases from 5 to 6.5 then decreases from 6.5 to 10 .
d) The molar solubility is constant.
e) The molar solubility decreases from 5 to 6.5 then increases from 6.5 to 10 .

6] What is the mass balance equation for $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$? Note for $\mathrm{H}_{2} \mathrm{CO}_{3} \mathrm{pK}_{\mathrm{a} 1}=6.352$, and $\mathrm{pK}_{\mathrm{a} 2}$ $=10.329 .{ }^{6}$

7] The weak acid, $\mathrm{H}_{2} \mathrm{~A}$ has $\mathrm{K}_{\mathrm{a} 1}=1.0 \mathrm{e}-4$ and $\mathrm{K}_{\mathrm{a} 2}=1.0 \mathrm{e}-8$. The fraction, $\alpha_{A^{2-}}$ at pH 7.00 can be calculated from which of the following? ${ }^{7}$

$$
\begin{gathered}
\frac{\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}} \\
\frac{K_{a 1} K_{a 2}}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}} \\
\frac{K_{a 1}\left[H^{+}\right]}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}} \\
\frac{K_{a 1} K_{a 2}\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}} \\
\frac{K_{a 1} K_{a 2}\left[H^{+}\right]}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}}
\end{gathered}
$$

8] What is the pH of a solution containing 0.10 M NaA and 0.10 M HA ? $\mathrm{K}_{\mathrm{a}}=1.0 \mathrm{x}$ $10^{-5} \quad 8$

9] How many milliliters of 1.0 M NaOH must be added to 1.0 L of $0.20 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ to produce a buffer at pH 10 ? $\mathrm{K}_{\mathrm{a}}=5.7 \times 10^{-10} \quad 9$

10] What is the pH of a titration solution that is a combination of 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 15.00 mL of 0.100 M NaOH ? $\mathrm{K}_{\mathrm{a} 1}=1.00 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=1.00 \times 10^{-6} 10$

11] What is the pH of a titration solution that is a combination of 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 25.00 mL of 0.100 M NaOH ? $\mathrm{K}_{\mathrm{a} 1}=1.00 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=1.00 \times 10^{-6}{ }^{11}$

12] What is the pH of a titration solution that is a combination of 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 10.00 mL of 0.100 M NaOH ? $\mathrm{K}_{\mathrm{a} 1}=1.00 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=1.00 \times 10^{-6}{ }^{12}$

13] What is the pH of a titration solution that is a combination of 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ and 20.00 mL of 0.100 M NaOH ? $\mathrm{K}_{\mathrm{a} 1}=1.00 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=1.00 \times 10^{-6} 13$

14] What is the fraction of EDTA at Y^{4-} at pH 7 ? ${ }^{14}$
15] What is the charge balance equation for a solution containing $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and HCl ? You may ignore K w. ${ }^{15}$

Answers

```
\({ }^{1}\) Titration \(\mathrm{Rxn}: \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftarrows \mathrm{AgCl}(\mathrm{s})\)
    Mol of \(\mathrm{Ag}^{+}=0.05000 \mathrm{~L}^{*} 0.100 \mathrm{M} \mathrm{AgNO}_{3}=5.00 \mathrm{e}-3\)
    Mol of \(\mathrm{Cl}^{-}=0.10000 \mathrm{~L}^{*} 0.100 \mathrm{M} \mathrm{KCl}=1.00 \mathrm{e}-2\)
Rxn:
\begin{tabular}{ll}
\(\mathrm{Ag}^{+} \quad+\quad \mathrm{Cl}^{-} \rightleftarrows\) \\
\(5.00 \mathrm{e}-3\) & \(1.00 \mathrm{e}-2\) \\
\(-5.00 \mathrm{e}-3\) & \(-5.00 \mathrm{e}-3\)
\end{tabular}
\(\left[\mathrm{Cl}^{-}\right]=5.00 \mathrm{e}-3 \mathrm{~mol} \mathrm{Cl}^{-} / 0.1500 \mathrm{~L}=3.33 \mathrm{e}-2\)
    \(\mathrm{AgCl}(\mathrm{s}) \quad \rightleftarrows \quad \mathrm{Ag}^{+}+\quad \mathrm{Cl}^{-}\)
--
    \(x(3.33 e-2) \cong 1.8 e-10\)
    \(x=5.4 \mathrm{e}-9 \mathrm{M}\)
    \(\mathrm{pAg}=8.27\)
\({ }^{2}\left[\mathrm{Ag}^{+}\right]=(1-0.97) 0.100 \mathrm{~F}=3.00 \mathrm{e}-3 \mathrm{M} \quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \mathrm{e}-10=3.00 \mathrm{e}-3 \mathrm{M}^{*}\left[\mathrm{Cl}^{-}\right] \rightarrow\left[\mathrm{Cl}^{-}\right]=\)
6.0e-8 M
\({ }^{3}\left[\mathrm{Ca}^{2+}\right]\)
4
\[
\mathrm{pH}=1 / 2(\mathrm{pKa} 1+\mathrm{pKa} 2) \quad \mathrm{pKa} 1=-\log (6.1 \mathrm{e}-4)=3.21 \quad \mathrm{pKa2}=-\log (1.1 \mathrm{e}-9)=8.96
\]
\[
\mathrm{pH}=6.09
\]
\({ }^{5}\) Molar Solubility stays constant as the predominate form of sulfate is \(\mathrm{SO}_{4}{ }^{2-}\) in this pH range. \(\mathrm{SO}_{4}{ }^{2-}\) doesn't hydrolyze as it's the conjugate base of a strong acid.
\({ }^{6}\) initial \(\quad\left[\mathrm{Na}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right] \quad\) then consider hydrolysis
\[
\begin{aligned}
& \mathrm{HCO}_{3}^{-}=\mathrm{H}^{+}+\mathrm{CO}_{3}^{=} \\
& \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}
\end{aligned}
\]
final \(\quad\left[\mathrm{Na}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{=}\right]\)
7
\(\frac{K_{a 1} K_{a 2}}{\left[H^{+}\right]^{2}+\left[H^{+}\right] K_{a 1}+K_{a 1} K_{a 2}}\)
```

${ }^{8} \mathrm{~K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \quad 1.0 \times 10^{-5}=\left[\mathrm{H}^{+}\right] 0.10 / 0.10 \quad\left[\mathrm{H}^{+}\right]=1.0 \mathrm{e}-5 \quad \mathrm{pH}=5.00$
${ }^{9}$ Find pH using
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]$
$\left[\mathrm{H}^{+}\right]=1.0 \mathrm{e}-10$
initial $\mathrm{mol} \mathrm{NH}_{4}{ }^{+}=0.20 \mathrm{M}^{*} 1.0 \mathrm{~L}=0.20 \mathrm{~mol}$

Rxn	$\mathrm{NH}_{4}{ }^{+}+$	$\mathrm{OH}-$	$\mathrm{NH}_{3}+$	$\mathrm{H}_{2} \mathrm{O}$	
0.20 mol	x		0		--
$-x$	$-x$		$+x$		--
$0.20-x$	0		x		

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]=5.7 \mathrm{e}-10=1.0 \mathrm{e}-10 \mathrm{x} /(0.20-\mathrm{x})$
$x=0.030 \mathrm{~mol} \mathrm{OH}-\quad$ requires 0.170 L
${ }^{10}$ initial $\mathrm{mol} \mathrm{H}_{2} \mathrm{~A}=10.00 * 0.100=1.00 \mathrm{mmol}$
added $\mathrm{mol} \mathrm{NaOH}=15.00 * 0.100=1.50 \mathrm{mmol}$
Past the $1^{\text {st }}$ eq. pt. excess $\mathrm{OH}-=0.50 \mathrm{mmol}$
$\mathrm{HA}^{-}+\mathrm{OH}^{-} \quad=\mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{2-}$
$1.00 \quad 0.50 \mathrm{mmol} \quad--\quad 0$
$-0.50 \quad-0.50 \mathrm{mmol}$ $+0.50 \mathrm{mmol}$
$0.500 \quad 0.50 \mathrm{mmol}$
buffer system $\left[\mathrm{HA}^{-}\right]=\left[\mathrm{A}^{2-}\right]=0.50 \mathrm{mmol} / 25.00 \mathrm{~mL}$
$\mathrm{K}_{\mathrm{a} 2}=1.00 \mathrm{e}-6=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2}\right] /\left[\mathrm{HAA}^{-}\right]=\left[\mathrm{H}^{+}\right]$

$$
\mathrm{pH}=6.00
$$

${ }^{11}$ past $2^{\text {nd }}$ eq. pt. initial $\mathrm{mol} \mathrm{H}_{2} \mathrm{~A}=10.00 * 0.100=1.00 \mathrm{mmol}$

$$
\text { added } \mathrm{mol} \mathrm{NaOH}=25.00 * 0.100=2.50 \mathrm{mmol}
$$

$$
\begin{aligned}
& \text { excess } \mathrm{OH}^{-}=0.50 \mathrm{mmol} \\
& {\left[\mathrm{OH}^{-}\right]=0.50 \mathrm{mmol} / 35.00 \mathrm{~mL}=1.43 \mathrm{e}-2 \mathrm{M}} \\
& \mathrm{pOH}=1.845 \quad \mathrm{pH}=12.15
\end{aligned}
$$

12
initial $\mathrm{mol} \mathrm{H}_{2} \mathrm{~A}=$ added $\mathrm{mol} \mathrm{OH}^{-}$first eq. pt.
$\left[\mathrm{HA}^{-}\right]=1.000 \mathrm{mmol} / 20.00 \mathrm{~mL}=5.000 \mathrm{e}-2 \mathrm{M}$
Amphoteric Species

$$
\begin{aligned}
& \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-} \quad \& \quad \mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} \\
& \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)=1 / 2(3.000+6.000)=4.500
\end{aligned}
$$

${ }^{13} 2$ eq. pt.
Initial mol H2A $=10.00 \mathrm{~mL}^{*} 0.100 \mathrm{M}=1.00 \mathrm{mmol}$
Added $\mathrm{OH}^{-}=20.00 \mathrm{~mL}^{*} 0.100 \mathrm{M}=2.00 \mathrm{mmol}^{2}$
This is the $2^{\text {nd }}$ eq. pt.

$$
\text { So }\left[\mathrm{A}^{2-}\right]=1.00 \mathrm{mmol} / 30.00 \mathrm{~mL}=3.33 \mathrm{e}-2 \mathrm{M}
$$

Now must consider:

${ }^{15}\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=2\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{Cl}^{-}\right]$

