

1] What is $\mathrm{K}_{\mathrm{f}}^{\prime}$ for AgEDTA^{3-} at $\mathrm{pH} 10 ?^{1}$

2] Calculate the concentration of free Ca^{2+} when $\left[\mathrm{Y}^{4-}\right]=5.0 \mathrm{e}-3 \mathrm{M}$, and $\left[\mathrm{CaY}^{2-}\right]=1.0 \mathrm{e}-2$, at $\mathrm{pH} 10 . \mathrm{K}_{\mathrm{f}}{ }^{\prime}=$ $1.8 \mathrm{e} 10 .{ }^{2}$ Note - everyone got full credit for this question.

3] What is the final concentration of Ca2+ if the initial concentration of CaEDTA2- is $2.50 \mathrm{e}-2 \mathrm{M}$? $\left(\mathrm{K}_{\mathrm{f}}^{\prime}=\right.$ $1.8 \mathrm{e} 10)^{3}$

4] What is the fraction of free metal, M^{2+} with NH_{3} if the $\mathrm{M}\left(\mathrm{NH}_{3}\right)^{2+}$ complex forms? ${ }^{4}$

$$
\beta_{1}=\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)\right] /\left[\mathrm{M}^{2+}\right]\left[\mathrm{NH}_{3}\right] \quad \beta_{2}=\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2}\right] /\left[\mathrm{M}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{2}
$$

a] $\alpha_{\mathrm{M}_{2}+}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]\right\}$
b] $\alpha_{\mathrm{M} 2+}=\left[\mathrm{M}^{2+}\right] /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\}$
c] $\alpha_{M 2+}=1 /\left\{1+\beta_{1}+\beta_{2}{ }^{2}\right\}$
d] $\alpha_{\mathrm{M} 2+}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\}$
e] $\alpha_{\mathrm{M}_{2+}}=\left\{\beta_{1} \beta_{2}\right\} /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\}$
5] Which of the following species is the strongest oxidizing agent? ${ }^{5}$

$$
\begin{array}{ll}
A+e^{-}=A^{-} & E^{0}=0.500 \text { Volts } \\
A^{-}+e^{-}=A^{2-} & E^{0}=0.000 \text { volts } \\
A^{2-}+e^{-}=A^{3-} & E^{0}=-0.500 \text { volts }
\end{array}
$$

6] What is E^{0} for the reaction below given the following information? ${ }^{6}$

$$
\begin{array}{ll}
\mathrm{FeCO}_{3}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{3}^{2-} & \mathrm{E}^{0}=? \\
\mathrm{FeCO}_{3} & \mathrm{~K}_{\mathrm{sp}}=2.1 \mathrm{e}-11 \\
\mathrm{Fe}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Fe}(\mathrm{~s}) & \mathrm{E}^{0}=-0.44 \mathrm{~V}
\end{array}
$$

7] What is E^{0} cell for the following reaction given the following? ${ }^{7}$

$$
\begin{array}{ll}
2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Ce}^{4+}=2 \mathrm{Fe}^{2+}+\mathrm{Ce}^{3+} & \mathrm{E}^{0} \text { cell }=? \\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}=\mathrm{Fe}(\mathrm{~s}) & \mathrm{E}^{0}=-0.44 \mathrm{~V} \\
\mathrm{Ce}^{4+}+\mathrm{e}-=\mathrm{Ce}^{3+} & \mathrm{E}^{0}=1.44 \mathrm{~V}
\end{array}
$$

8] ApH electrode responds with a potential of -0.513 V in a solution of 0.050 M KHP (pH 4.01). What is the pH of an unknown solution if that same electrode responds with a potential of -0.643 V ? ${ }^{8}$

9] Fe^{2+} was titrated with $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in the following reaction:
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}=6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
At the equivalence point, which of the following is true? ${ }^{9}$
a] $6\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] \& 3\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Cr}^{3+}\right]$
b] $\left[\mathrm{Fe}^{2+}\right]=6\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] \&\left[\mathrm{Fe}^{3+}\right]=3\left[\mathrm{Cr}^{3+}\right]$
c] $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right] \&\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Cr}^{3+}\right]$
d] $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}^{3+}\right] \&\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=\left[\mathrm{Cr}^{3+}\right]$
e] $3\left[\mathrm{Fe}^{2+}\right]=2\left[\mathrm{Fe}^{3+}\right] \& 2\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=3\left[\mathrm{Cr}^{3+}\right]$

10] The van Deemter Equation follows as $H=A+B / u+C u$. Which of the following is true? ${ }^{10}$ a] B / u is the contribution of slow kinetics to band broadening.
b] A is the contribution of slow kinetics to band broadening.
c] Cu is the contribution of linear diffusion to band broadening.
d] Cu is the contribution of slow kinetics to band broadening.
e] A is the contribution of slow kinetics to band broadening.

11] Which is true in regards to the thermal conductivity detector for gas chromatography? ${ }^{11}$
a] It is not a universal detector
b] It is sensitive to the presence of ionic liquids
c] It is a low temperature detector (below $25^{\circ} \mathrm{C}$)
d] It is a universal detector
e] It requires a vacuum for operation

12] Which of the following is the predominate carrier gas in GC? ${ }^{12}$
a] He
b] air
c] Ar
d] O_{2}
e] H_{2}
13] In the following diagram which of the labels best represents the absorption process? ${ }^{13}$

14] A GC ethanol analysis was conducted by the method of internal standards. That internal standard was (IS) 1-propanol. The following results were obtained. ${ }^{14}$

		detector response	retention time
Injection 1	$0.050 \%(\mathrm{~m} / \mathrm{m})$ IS	25,100	10.33 mins
	$0.050 \%(\mathrm{~m} / \mathrm{m})$ Ethanol	29,200	6.57
Injection 2	$0.050 \%(\mathrm{~m} / \mathrm{m})$ IS		
	unknown ethanol	27,200	10.52
		46,400	6.62

What is the concentration of the unknown?

15] A UV-vis absorbance analysis was conducted on an analyte. It absorbs at 544 nm . The first run was of the sample itself that had an absorbance of 0.321 . In the second run the sample had its concentration of unknown increased by 0.150 mM . The absorbance of that spiked sample is 0.471 . What is the concentration of the unknown? ${ }^{15}$

Answers

1
$\log K=7.32 \quad K=2.1 e 7 \quad K_{f}{ }^{\prime}=\alpha_{y 4}-K_{f}=0.36 * 2.1 e 7=7.5 e 6$

2
$1.8 \mathrm{e} 10=[1.0 \mathrm{e}-2] /\left[\mathrm{Ca}^{2+}\right]^{*}[5.0 \mathrm{e}-3] \quad\left[\mathrm{Ca}^{2+}\right]=1.1 \mathrm{e}-10$

3
CaEDTA $=\mathrm{Ca}^{2+}+$ EDTA
2.50e-2
-x
$+x \quad+x$
$1.80 \mathrm{e} 10=2.50 \mathrm{e}-2-\mathrm{x} / \mathrm{x}^{2} \approx 2.50 \mathrm{e}-2 / \mathrm{x}^{2}$

$$
x=1.18 e-6 M
$$

4 ans d
$5 \quad$ A is the strongest oxidizing agent
6

$$
\begin{array}{ll}
\mathrm{Fe}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Fe}(\mathrm{~s}) \quad \mathrm{E}^{0}=-0.44 \mathrm{~V} & \\
\mathrm{E}=-0.44-0.0592 / 2 \log \left(1 /\left[\mathrm{Fe}^{2+}\right]\right) & \text { find }\left[\mathrm{Fe}^{2+}\right] \text { from } \\
\mathrm{Ksp}=2.1 \mathrm{e}-11=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right] & {\left[\mathrm{Fe}^{2+}\right]=2.1 \mathrm{e}-11 /\left[\mathrm{CO}_{3}^{2-}\right]} \\
\mathrm{E}=-0.44-0.0592 / 2 \log \left(\left[\mathrm{CO}_{3}^{2-}\right] / 2.1 \mathrm{e}-11\right) & \text { Let }\left[\mathrm{CO}_{3}^{2-}\right]=1 \text { for } \mathrm{E}^{0} \\
\mathrm{E}^{0}=-0.44-0.0592 / 2 \log (1 / 2.1 \mathrm{e}-11)=-0.756 \mathrm{~V}
\end{array}
$$

```
7 E E cell = E E cathode - E E anode = 1.44-(-0.44) V = 1.88 V
8 E = const - 0.0592pH find const -0.513 V = const -0.0592(4.01) const =-0.276 V
    -0.643 =-0.276-0.0592pH pH = 6.20
9}\textrm{b}][\mp@subsup{\textrm{Fe}}{}{2+}]=6[\mp@subsup{\textrm{Cr}}{2}{}\mp@subsup{\textrm{O}}{7}{2-}]&[\mp@subsup{\textrm{Fe}}{}{3+}]=3[\mp@subsup{\textrm{Cr}}{}{3+}
10 ans.d
11 and. d
12 ans.a.
13 ans. A
14 Use F factor response or dimensional analysis.
    46,400 * (25,100/27,200) * (0.050%/29200) = 0.073%
\mp@subsup{}{}{15}\mathrm{ find x-int in the A vs. c plot}
    slope = (0.471-0.321)/0.150=1.00
    line: A = 1.00 c + 0.150
    x-int: c = -0.321 ans. 0.321 mM
```

