

1] A weak acid (HA) has $K_{a1} = 1.0 \times 10^{-4}$. What is the fraction of the conjugate base at pH 4.50?

- a) 25%
- b) 76%
- c) 50%
- d) 95%
- e) 10%

2] A salt AB₃ has a molar solubility of 0.050M. What is the K_{sp} of that salt? AB₃(s) = A³⁺ + 3B⁻

- a) 4.6 x 10⁻¹⁰
- b) 3.7 x 10⁻³
- c) 6.6 x 10⁻⁸
- d) 9.1 x 10⁻¹⁵
- e) 1.7 x 10⁻⁴

3] What is the pH of a 0.100M of a diprotic weak acid, H_2A given

 $K_{a1} = 1.0 \times 10^{-4} \qquad K_{a2} = 1.0 \times 10^{-8}$ a) 7.78 b) 2.50 c) 5.60 d) 3.40 c) 4.50

e) 4.50

4] What is the mass balance equation for MnS (K_{sp} = 3 x 10⁻¹¹). H₂S, K_{a1} = 9.5 x 10⁻⁸, K_{a2} 1.0 x 10⁻¹⁴

- a) $[Mn^{2+}] = [S^{2-}] + [HS^{-}] + [H_2S]$
- b) $2[Mn^{2+}] = 2[S^{2-}] + [HS^{-}] + [H_2S]$
- c) $[Mn^{2+}] = [S^{2-}] + [HS^{-}] + [H_2S] + [OH^{-}]$
- d) $[Mn^{2+}]^{1/2} = [S^{2-}]^{1/2} + [HS^{-}] + [H_2S]$
- e) $[Mn^{2+}] + [H^+] = [S^{2-}] + [HS^-]$

5] What is the charge balance equation for a solution of MnS after it reaches equilibrium? Consider K_w in this analysis.

- a) $\frac{1}{2}$ [Mn²⁺] + [H⁺] = $\frac{1}{2}$ [S²⁻] + [HS⁻] + [OH⁻]
- b) $[Mn^{2+}] + [H^+] = 2[S^{2-}] + [HS^-] + [OH^-]$
- c) $[Mn^{2+}] + [H^+] = [S^{2-}] + [HS^-] + [OH^-]$
- d) $2[Mn^{2+}] + [H^+] = 2[S^{2-}] + [HS^-] + [OH^-]$
- e) $[Mn^{2+}] + 2[H^+] = [S^{2-}] + 2[HS^-] + 2[OH^-]$

6] What is pAg when 10.00 mL of 0.0100 M AgNO₃ is added to 10.00 mL of 0.0050 M KCl?

AgCl $K_{sp} = 1.8 \times 10^{-10}$

- a) 4.50
- b) 7.60
- c) 2.60
- d) 5.20
- e) 8.90
- 7] What is pAg when 10.00 mL of 0.0100 M AgNO₃ is added to 20.00 mL of 0.0050 M KCl? AgCl K_{sp} = 1.8×10^{-10}
 - a) 4.89
 - b) 7.80
 - c) 2.94
 - d) 6.45
 - e) 5.21

8] What is the pH when 15.00 mL of 0.100 M NaOH is added to 10.00 mL of 0.100 M H₂CO₃? $K_{a1} = 4.46 \times 10^{-7}$, $K_{a2} = 4.69 \times 10^{-11}$

- a) 8.772
- b) 7.152
- c) 6.991
- d) 7.159
- e) 10.329

9] What is the pH of 0.100 M NaHA? pk_{a1} = 4.00, pK_{a2} = 9.00

- a) 7.00
- b) 6.00
- c) 9.00
- d) 6.50
- e) 4.00

10] The buffer region in the titration curve of a monoprotic weak acid (HA) with 0.100 M strong base (NaOH) relative to the equivalence point volume Ve is

- a) Near 2(Ve)
- b) Near Ve/2
- c) Near Ve
- d) At Ve
- e) Near Ve/4

11] What happens to standardized 0.100 M NaOH with age?

- a) Nothing
- b) The pH will start deviating downwards as CO₂ dissolves into the solution.
- c) The pH will start deviating upwards as CO₂ dissolves into the solution.
- d) The pH will start deviating downwards as O₂ dissolves into the solution.
- e) The pH will start deviating downwards as N₂ dissolves into the solution.

12] Which acid would be best for the preparation of a buffer at pH 8.50?

- a) $K_a = 5.0 \times 10^{-5}$
- b) $K_a = 1.2 \times 10^{-4}$
- c) $K_a = 8.7 \times 10^{-10}$
- d) $K_a = 9.6 \times 10^{-6}$
- e) $K_a = 8.5 \times 10^{-8}$

13] Which expression best describes the solubility of Ag₂S?

 $K_{sp} = 8 \times 10^{-51}$ $H_2S K_a = 9.5 \times 10^{-8}$ $HS^- K_a = 1.0 \times 10^{-14}$

- a) [S²⁻]
- b) ½ [Ag⁺]
- c) 2 [Ag⁺]
- d) [Ag⁺]²
- e) $[Ag^+]^{1/2}$

14] How many moles of a diprotic acid H₂A must be added to 1.00 L of 1.00 M Na₂A to produce a pH buffer at 6.00? $pK_{a1} = 3.00$ $pK_{a2} = 6.00$

- a) 0.500 mol
- b) 0.666 mol
- c) 1.00 mol
- d) 0.250 mol
- e) 0.333 mol

15] My Chem 254 Lab Section Meets

- a) Mornings at 8:30 am Sec 01
- b) Afternoons at 2:30 pm Sec 02
- c) Evenings at 6:30 pm Sec 03
- d) I am not in a lab this semester

Answers

1] A weak acid (HA) has $K_{a1} = 1.0 \times 10^{-4}$. What is the fraction of the conjugate base at pH 4.50?

$\alpha(HA) = [H^+] / [H^+] + K_{a1}$	$\alpha(A-) = K_{a1} / [H^+] + K_{a1}$
[H ⁺] = 3.16e-5	α (A-) = 1.e-4 / [3.16e-5] + 1.0e-4 = 0.76 or 76%

2] A salt AB₃ has a molar solubility of 0.050M. What is the K_{sp} of that salt? AB₃(s) = A³⁺ + 3B⁻

 $1D_3(5) - A + 5D$

 $\begin{array}{rl} AB_3(s) = A^{3+} & + & 3B^- \\ 0.50 & 3(0.050) \\ Ksp = 0.050(3^*0.050)^3 = 1.7e\text{-}4 \end{array}$

3] What is the pH of a 0.100M of a diprotic weak acid, H_2A given

 $K_{a1} = 1.0 \times 10^{-4}$ $K_{a2} = 1.0 \times 10^{-8}$

You can ignore K_{a2} as $K_{a1} >> K_{a2}$ $H_2A = H^+ + HA^-$ 0.10 -x +x +x +x $K_{a1} = 1.0 \times 10^{-4} = [H^+][HA^-] / [H_2A] \cong x^2/0.10$ $[H^+] = 3.16e-3 \text{ pH} = 2.50$

4] What is the mass balance equation for MnS (K_{sp} = 3 x 10⁻¹¹). H₂S, K_{a1} = 9.5 x 10⁻⁸, K_{a2} 1.0 x 10⁻¹⁴

Initial MnS \neq Mn²⁺ + S²⁻ [Mn²⁺] = [S²⁻]

Then S ²⁻ hydrolyzes	$S^{2-} + H_2O \rightarrow HS^- + OH^-$	$K_{b1} = K_w/K_{a2}$
	$HS^{-} + H_2O \rightarrow H_2S + OH^{-}$	$K_{b2} = K_w/K_{a1}$
At Equilibrium MBE is	$[Mn^{2+}] = [S^{2-}] + [HS^{-}] + [H_2S]$	

5] What is the charge balance equation for a solution of MnS after it reaches equilibrium? Consider K_w in this analysis.

 $2[Mn^{2+}] + [H^+] = 2[S^{2-}] + [HS^-] + [OH^-]$

6] What is pAg when 10.00 mL of 0.0100 M AgNO₃ is added to 10.00 mL of 0.0050 M KCl? AgCl K_{sp} = 1.8×10^{-10}

10.00 mL (0.0100 M) = 0.100 mmol Ag⁺ 10.00 mL(0.0050 M) = 0.050 mmol Cl⁻ Excess Ag⁺ = 0.100 - 0.050 mmol = 0.050 mmol [Ag+] = 0.050 mmol / 20.00 mL = 2.5e-3 M pAg = 2.60

7] What is pAg when 10.00 mL of 0.0100 M AgNO₃ is added to 20.00 mL of 0.0050 M KCl? AgCl K_{sp} = 1.8 x 10⁻¹⁰

10.00 mL (0.0100 M) = 0.100 mmol Ag⁺ 20.00 mL(0.0050 M) = 0.100 mmol Cl⁻ Initially AgCl(s) then AgCl(s) = Ag+ + Cl x^2 = 1.8e-10 x = 1.3e-5

8] What is the pH when 15.00 mL of 0.100 M NaOH is added to 10.00 mL of 0.100 M H₂CO₃? $K_{a1} = 4.46 \times 10^{-7}$, $K_{a2} = 4.69 \times 10^{-11}$

Past 1st eq. pt., i.e. all H_2CO_3 now becomes HCO_3^- Initial mol $HCO_3^- = 10.00$ mL (0.100) = 1.00 mmol HCO_3^- Excess OH- = 15.00 - 10.00 (0.100 M) = 0.500 mmol

HCO ₃ [−]	+ OH⁻ =	H ₂ O	$+ CO_3^{2-}$
1.00	0.500 mmol		0
-0.500	-0.500		+0.500 mmol
0.500	0		0.500 mmol

 $K_{a2} = 4.69e-11 =$ [H⁺] 0.500/V 0.500/V

note V is total vol. and V/V = 1

pH = 10.329

note: this is the buffer region

9] What is the pH of 0.100 M NaHA? pk_{a1} = 4.00, pK_{a2} = 9.00

 $pH = \frac{1}{2} (pk_{a1} + pk_{a2}) = 6.50$

10] The buffer region in the titration curve of a monoprotic weak acid (HA) with 0.100 M strong base (NaOH) is at

Near ½ the volume of the equivalence point

11] What happens to standardized 0.100 M NaOH with age?

The pH will start deviating downwards as CO₂ dissolves into the solution.

12] Which acid would be best for the preparation of a buffer at pH 8.50?

 $K_a = 8.7 \times 10^{-10}$

13] Which expression best describes the solubility of Ag₂S?

 $K_{sp} = 8 \times 10^{-51}$ $H_2S K_a = 9.5 \times 10^{-8}$ $HS^- K_a = 1.0 \times 10^{-14}$

½ [Ag⁺]

14] How many moles of a diprotic acid H2A must be added to 1.00 L of 1.00 M Na2A to produce a pHbuffer at 6.00? $pK_{a1} = 3.00$ $pK_{a2} = 6.00$

 $1.00 L * (1.00 M) = 1.00 mol of H_2A$

 $pH 6.00 = pK_{a2}$ so use $K_{a2} = 1.00e-6 = \frac{[H^+][A^{2-}]}{[HA^-]}$

Need $[HA^-] = [A^2]^-$ for pH = pK_a = 6.00

Initial mol $A^{2-} = 1.00 L (1.00 M) = 1.00 mol A^{2-}$

H ₂ A	+ A ²⁻	=	2HA⁻
x mol	1.00 mol		0
-X	-X		+2x
0	1.00 - x		2x

1.00-x = 2x x = 0.333 mol H₂A