

1] A weak acid (HA) has $K_{a 1}=1.0 \times 10^{-4}$. What is the fraction of the conjugate base at pH 4.50 ?
a) 25%
b) 76%
c) 50%
d) 95%
e) 10%

2] A salt $A B_{3}$ has a molar solubility of 0.050 M . What is the $K_{\text {sp }}$ of that salt?
$A B_{3}(s)=A^{3+}+3 B^{-}$
a) 4.6×10^{-10}
b) 3.7×10^{-3}
c) 6.6×10^{-8}
d) 9.1×10^{-15}
e) 1.7×10^{-4}

3] What is the pH of a 0.100 M of a diprotic weak acid, $\mathrm{H}_{2} \mathrm{~A}$ given

$$
\mathrm{K}_{\mathrm{a} 1}=1.0 \times 10^{-4} \quad \mathrm{~K}_{\mathrm{a} 2}=1.0 \times 10^{-8}
$$

a) 7.78
b) 2.50
c) 5.60
d) 3.40
e) 4.50

4] What is the mass balance equation for $\mathrm{MnS}\left(\mathrm{K}_{\text {sp }}=3 \times 10^{-11}\right)$.
$\mathrm{H}_{2} \mathrm{~S}, \mathrm{~K}_{\mathrm{a} 1}=9.5 \times 10^{-8}, \mathrm{~K}_{\mathrm{a} 2} 1.0 \times 10^{-14}$
a) $\left[\mathrm{Mn}^{2+}\right]=\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]$
b) $2\left[\mathrm{Mn}^{2+}\right]=2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]$
c) $\left[\mathrm{Mn}^{2+}\right]=\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]+\left[\mathrm{OH}^{-}\right]$
d) $\left[\mathrm{Mn}^{2+}\right]^{1 / 2}=\left[\mathrm{S}^{2-}\right]^{1 / 2}+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]$
e) $\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]$

5] What is the charge balance equation for a solution of MnS after it reaches equilibrium? Consider K_{w} in this analysis.
a) $1 / 2\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=1 / 2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
b) $\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
d) $2\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
e) $\left[\mathrm{Mn}^{2+}\right]+2\left[\mathrm{H}^{+}\right]=\left[\mathrm{S}^{2-}\right]+2\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{OH}^{-}\right]$

6] What is pAg when 10.00 mL of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 10.00 mL of 0.0050 M KCl ?
$\mathrm{AgCl} \mathrm{K} \mathrm{K}_{\mathrm{sp}}=1.8 \times 10^{-10}$
a) 4.50
b) 7.60
c) 2.60
d) 5.20
e) 8.90

7] What is pAg when 10.00 mL of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 20.00 mL of 0.0050 M KCl ?

$$
\mathrm{AgCl} \mathrm{~K}_{\text {sp }}=1.8 \times 10^{-10}
$$

a) 4.89
b) 7.80
c) 2.94
d) 6.45
e) 5.21

8] What is the pH when 15.00 mL of 0.100 M NaOH is added to 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$?
$\mathrm{K}_{\mathrm{a} 1}=4.46 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}=4.69 \times 10^{-11}$
a) 8.772
b) 7.152
c) 6.991
d) 7.159
e) 10.329

9] What is the pH of 0.100 M NaHA ? $\mathrm{pk}_{\mathrm{a} 1}=4.00, \mathrm{pK}_{\mathrm{a} 2}=9.00$
a) 7.00
b) 6.00
c) 9.00
d) 6.50
e) 4.00

10] The buffer region in the titration curve of a monoprotic weak acid (HA) with 0.100 M strong base (NaOH) relative to the equivalence point volume Ve is
a) Near $2(\mathrm{Ve})$
b) Near Ve/2
c) Near Ve
d) At Ve
e) Near Ve/4

11] What happens to standardized 0.100 M NaOH with age?
a) Nothing
b) The pH will start deviating downwards as CO_{2} dissolves into the solution.
c) The pH will start deviating upwards as CO_{2} dissolves into the solution.
d) The pH will start deviating downwards as O_{2} dissolves into the solution.
e) The pH will start deviating downwards as N_{2} dissolves into the solution.

12] Which acid would be best for the preparation of a buffer at pH 8.50 ?
a) $\mathrm{K}_{\mathrm{a}}=5.0 \times 10^{-5}$
b) $K_{a}=1.2 \times 10^{-4}$
c) $K_{a}=8.7 \times 10^{-10}$
d) $K_{a}=9.6 \times 10^{-6}$
e) $K_{a}=8.5 \times 10^{-8}$

13] Which expression best describes the solubility of $\mathrm{Ag}_{2} \mathrm{~S}$?
$\mathrm{K}_{\mathrm{sp}}=8 \times 10^{-51}$
$\mathrm{H}_{2} \mathrm{~S} \mathrm{~K}_{\mathrm{a}}=9.5 \times 10^{-8}$
$\mathrm{HS}^{-} \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-14}$
a) $\left[\mathrm{S}^{2-}\right]$
b) $1 / 2\left[\mathrm{Ag}^{+}\right]$
c) $2\left[\mathrm{Ag}^{+}\right]$
d) $\left[\mathrm{Ag}^{+}\right]^{2}$
e) $\left[\mathrm{Ag}^{+}\right]^{1 / 2}$

14] How many moles of a diprotic acid $\mathrm{H}_{2} \mathrm{~A}$ must be added to 1.00 L of $1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{~A}$ to produce a pH buffer at 6.00? $\mathrm{pK}_{\mathrm{a} 1}=3.00 \quad \mathrm{pK}_{\mathrm{a} 2}=6.00$
a) 0.500 mol
b) 0.666 mol
c) 1.00 mol
d) 0.250 mol
e) 0.333 mol

15] My Chem 254 Lab Section Meets
a) Mornings at 8:30 am Sec 01
b) Afternoons at $2: 30 \mathrm{pm} \mathrm{Sec} 02$
c) Evenings at $6: 30 \mathrm{pm} \mathrm{Sec} 03$
d) I am not in a lab this semester

Answers

1] A weak acid (HA) has $K_{a 1}=1.0 \times 10^{-4}$. What is the fraction of the conjugate base at pH 4.50 ?

$$
\begin{array}{ll}
\alpha(H A)=\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a} 1} & \alpha(\mathrm{~A}-)=\mathrm{K}_{\mathrm{a} 1} /\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a} 1} \\
{\left[\mathrm{H}^{+}\right]=3.16 \mathrm{e}-5} & \alpha(\mathrm{~A}-)=1 . \mathrm{e}-4 /[3.16 \mathrm{e}-5]+1.0 \mathrm{e}-4=0.76 \text { or } 76 \%
\end{array}
$$

2] A salt $A B_{3}$ has a molar solubility of 0.050 M . What is the $K_{s p}$ of that salt?

$$
\begin{aligned}
& \mathrm{AB}_{3}(\mathrm{~s})=\mathrm{A}^{3+}+3 \mathrm{~B}^{-} \\
& \\
& \mathrm{AB}_{3}(\mathrm{~s})=\mathrm{A}^{3+}+\quad 3 \mathrm{~B}^{-} \\
& 0.50 \quad 3(0.050) \\
& \mathrm{Ksp}=0.050\left(3^{*} 0.050\right)^{3}=1.7 \mathrm{e}-4
\end{aligned}
$$

3] What is the pH of a 0.100 M of a diprotic weak acid, $\mathrm{H}_{2} \mathrm{~A}$ given

$$
\mathrm{K}_{\mathrm{a} 1}=1.0 \times 10^{-4} \quad \mathrm{~K}_{\mathrm{a} 2}=1.0 \times 10^{-8}
$$

You can ignore $\mathrm{K}_{\mathrm{a} 2}$ as $\mathrm{K}_{\mathrm{a} 1} \gg \mathrm{~K}_{\mathrm{a} 2}$

$\mathrm{H}_{2} \mathrm{~A}$	H^{+}	+
$0.10-x$	$+x$	HA^{-}
$=\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right] \cong \mathrm{x}^{2} / 0.10$	$+x$	
	$\left[\mathrm{H}^{+}\right]=3.16 \mathrm{e}-3 \quad \mathrm{pH}=2.50$	

4] What is the mass balance equation for $\mathrm{MnS}\left(\mathrm{K}_{\text {sp }}=3 \times 10^{-11}\right)$.

$$
\mathrm{H}_{2} \mathrm{~S}, \mathrm{~K}_{\mathrm{a} 1}=9.5 \times 10^{-8}, \mathrm{~K}_{\mathrm{a} 2} 1.0 \times 10^{-14}
$$

Initial $\mathrm{MnS} \rightleftarrows \mathrm{Mn}^{2+}+\mathrm{S}^{2-}$

$$
\left[\mathrm{Mn}^{2+}\right]=\left[\mathrm{S}^{2-}\right]
$$

$$
\begin{array}{lll}
\text { Then } \mathrm{S}^{2-} \text { hydrolyzes } & \mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HS}^{-}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2} \\
& \mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1} \\
\text { At Equilibrium MBE is } & {\left[\mathrm{Mn}^{2+}\right]=\left[\mathrm{S}^{-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{~S}\right]} &
\end{array}
$$

5] What is the charge balance equation for a solution of MnS after it reaches equilibrium? Consider K_{w} in this analysis.

$$
2\left[\mathrm{Mn}^{2+}\right]+\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{2-}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{OH}^{-}\right]
$$

6] What is pAg when 10.00 mL of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 10.00 mL of 0.0050 M KCl ? $\mathrm{AgCl} \mathrm{K}_{\text {sp }}=1.8 \times 10^{-10}$
$10.00 \mathrm{~mL}(0.0100 \mathrm{M})=0.100 \mathrm{mmol} \mathrm{Ag}^{+}$
$10.00 \mathrm{~mL}(0.0050 \mathrm{M})=0.050 \mathrm{mmol} \mathrm{Cl}^{-}$
Excess $\mathrm{Ag}^{+}=0.100-0.050 \mathrm{mmol}=0.050 \mathrm{mmol}$
$[\mathrm{Ag}+]=0.050 \mathrm{mmol} / 20.00 \mathrm{~mL}=2.5 \mathrm{e}-3 \mathrm{M} \quad \mathrm{pAg}=2.60$
7] What is pAg when 10.00 mL of $0.0100 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 20.00 mL of 0.0050 M KCl ?

$$
\mathrm{AgCl}_{\mathrm{sp}}=1.8 \times 10^{-10}
$$

$10.00 \mathrm{~mL}(0.0100 \mathrm{M})=0.100 \mathrm{mmol} \mathrm{Ag}^{+}$
$20.00 \mathrm{~mL}(0.0050 \mathrm{M})=0.100 \mathrm{mmol} \mathrm{Cl}$
Initially $\mathrm{AgCl}(\mathrm{s})$ then $\mathrm{AgCl}(\mathrm{s})=\mathrm{Ag}++\mathrm{Cl}-$
$x^{2}=1.8 e-10 \quad x=1.3 e-5$
8] What is the pH when 15.00 mL of 0.100 M NaOH is added to 10.00 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$?
$\mathrm{K}_{\mathrm{a} 1}=4.46 \times 10^{-7}, \mathrm{~K}_{\mathrm{a} 2}=4.69 \times 10^{-11}$
Past $1^{\text {st }}$ eq. pt., i.e. all $\mathrm{H}_{2} \mathrm{CO}_{3}$ now becomes $\mathrm{HCO}_{3}{ }^{-}$
Initial $\mathrm{mol} \mathrm{HCO}_{3}{ }^{-}=10.00 \mathrm{~mL}(0.100)=1.00 \mathrm{mmol} \mathrm{HCO}_{3}{ }^{-}$
Excess OH- $=15.00-10.00(0.100 \mathrm{M})=0.500 \mathrm{mmol}$

HCO_{3}^{-}	$+\mathrm{OH}^{-}=$	$\mathrm{H}_{2} \mathrm{O}$	$+\mathrm{CO}_{3}{ }^{2-}$
1.00	0.500 mmol	--	0
-0.500	-0.500		+0.500 mmol
0.500	0		0.500 mmol

$$
\begin{array}{ll}
\mathrm{K}_{\mathrm{a} 2}=4.69 \mathrm{e}-11= & \frac{\left[\mathrm{H}^{+}\right] 0.500 / \mathrm{V}}{0.500 / \mathrm{V}} \\
\mathrm{pH}=10.329 \quad & \text { note: this is the buffer region } \mathrm{V} \text { is total vol. and } \mathrm{V} / \mathrm{V}=1
\end{array}
$$

9] What is the pH of 0.100 M NaHA ? $\mathrm{pk}_{\mathrm{a} 1}=4.00, \mathrm{pK}_{\mathrm{a} 2}=9.00$

$$
\mathrm{pH}=1 / 2\left(\mathrm{pk}_{\mathrm{a} 1}+\mathrm{pk}_{\mathrm{a} 2}\right)=6.50
$$

10] The buffer region in the titration curve of a monoprotic weak acid (HA) with 0.100 M strong base (NaOH) is at

Near $1 / 2$ the volume of the equivalence point

11] What happens to standardized 0.100 M NaOH with age?

The pH will start deviating downwards as CO_{2} dissolves into the solution.

12] Which acid would be best for the preparation of a buffer at pH 8.50 ?

$$
\mathrm{K}_{\mathrm{a}}=8.7 \times 10^{-10}
$$

13] Which expression best describes the solubility of $\mathrm{Ag}_{2} \mathrm{~S}$?

14] How many moles of a diprotic acid $\mathrm{H}_{2} \mathrm{~A}$ must be added to 1.00 L of $1.00 \mathrm{M} \mathrm{Na}_{2} \mathrm{~A}$ to produce a pH buffer at 6.00?

$$
\mathrm{pK}_{\mathrm{a} 1}=3.00 \quad \mathrm{pK}_{\mathrm{a} 2}=6.00
$$

$$
\begin{aligned}
& 1.00 \mathrm{~L}^{*}(1.00 \mathrm{M})=1.00 \mathrm{~mol} \text { of } \mathrm{H}_{2} \mathrm{~A} \\
& \mathrm{pH} 6.00=\mathrm{pK}_{\mathrm{a} 2} \text { so use } \quad \mathrm{K}_{\mathrm{a} 2}=1.00 \mathrm{e}-6=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]}
\end{aligned}
$$

$$
\text { Need }\left[\mathrm{HA}^{-}\right]=\left[\mathrm{A}^{2}\right]^{-} \text {for } \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=6.00
$$

$$
\text { Initial } \mathrm{mol}^{2-}=1.00 \mathrm{~L}(1.00 \mathrm{M})=1.00 \mathrm{~mol} \mathrm{~A}^{2-}
$$

$\mathrm{H}_{2} \mathrm{~A}$	$+\mathrm{A}^{2-}$	$2 \mathrm{HA}^{-}$
x mol	1.00 mol	0
$-x$	$-x$	$+2 x$
0	$1.00-x$	$2 x$
$1.00-x=2 x$	$x=0.333 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~A}$	

$$
\begin{aligned}
& K_{\text {sp }}=8 \times 10^{-51} \quad \mathrm{H}_{2} \mathrm{~S} \mathrm{~K} \mathrm{~K}_{\mathrm{a}}=9.5 \times 10^{-8} \quad \mathrm{HS}^{-} \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-14} \\
& 1 / 2\left[\mathrm{Ag}^{+}\right]
\end{aligned}
$$

