
Exam 3 – Chem 253 – December 2, 2015 16 Questions, 6.5 points each for question 1-15 2.5 points for answering question 16 correctly

Frequency

Grade

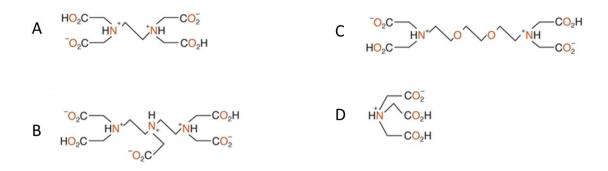
Average = 61 Std.Dev. = 16

	Values of $\alpha_{V^{4-}}$ for C and $\mu = 0.10$ M	Ion	$\log K_{\rm f}$	Ion	log K _f	Ion	log K _f
LID III III AU	c and p = on o at	Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
pH	$\alpha_{V^{4-}}$	Na ⁺	1.66	Fe ³⁺	25.1	Pr ³⁺	16.40
0	1.3×10^{-23}	K ⁺	0.8	Co ³⁺	41.4 (25°C)	Nd ³⁺	16.61
0 1	1.5 × 10	Be ²⁺	9.2	Zr ⁴⁺	29.5	Pm ³⁺	17.0
1	1.9×10^{-18}	Mg ²⁺	8.79	Hf4+	29.5 ($\mu = 0.2$)	Sm ³⁺	17.14
2 3	3.3×10^{-14}	Ca ²⁺	10.69	VO ²⁺	18.8	Eu ³⁺	17.35
3	2.6×10^{-11}	Sr ²⁺	8.73	VO_2^+	15.55	Gd ³⁺	17.37
4	3.8×10^{-9}	Ba ²⁺	7.86	Ag ⁺	7.32	Tb3+	17.93
5	3.7×10^{-7}	Ra ²⁺	7.1	T1 ⁺	6.54	Dy ³⁺	18.30
	2.3×10^{-5}	Sc3+	23.1	Pd ²⁺	18.5 (25°C,	Ho ³⁺	18.62
6 7		Y ³⁺	18.09		$\mu = 0.2$)	Er ³⁺	18.85
1	5.0×10^{-4}	La ³⁺	15.50	Zn ²⁺	16.50	Tm ³⁺	19.32
8 9	5.6×10^{-3}	V ²⁺	12.7	Cd ²⁺	16.46	Yb ³⁺	19.51
9	5.4×10^{-2}	Cr^{2+}	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
10	0.36	Mn ²⁺	13.87	Sn2+	18.3 ($\mu = 0$)	Am ³⁺	17.8 (25°C)
11	0.85	Fe ²⁺	14.32	Pb ²⁺	18.04	Cm3+	18.1 (25°C)
12	0.98	Co ²⁺	16.31	Al ³⁺	16.3	Bk ³⁺	18.5 (25°C)
13	1.00	Ni ²⁺	18.62	Ga ³⁺	20.3	Cf ³⁺	18.7 (25°C)
14	1.00	Cu ²⁺	18.80	In ³⁺	25.0	Th4+	23.2
14	1.00	Ti ³⁺	21.3 (25°C)	T1 ³⁺	37.8 ($\mu = 1.0$)	U^{4+}	25.8
		V ³⁺	26.0	Bi ³⁺	27.8	Np ⁴⁺	24.6 (25°C, μ = 1.0
		Cr ³⁺	23.4			1 C	

APPENDIX

Formation Constants*

Reacting ions	$\log \beta_1$	$\log \beta_2$	$\log \beta_3$	$\log \beta_4$	$\log \beta_5$	$\log \beta_6$	Temperature (°C)	Ionic strength (µ, M)
Ammonia, NH ₃							- 1 A	
Ag ⁺	3.31	7.23					25	0
Cd ²⁺	2.51	4.47	5.77	6.56			30	0
Co ²⁺	1.99	3.50	4.43	5.07	5.13	4.39	30	0
Cu ²⁺	3.99	7.33	10.06	12.03			30	0
Hg ²⁺	8.8	17.5	18.50	19.28			22	2
Ni ²⁺	2.67	4.79	6.40	7.47	8.10	8.01	30	0
Zn^{2+}	2.18	4.43	6.74	8.70	0110		30	0


1] The relationship between transmittance and absorbance is

- a) $T = -\log A$
- b) A = -log(T)
- c) $A = -log(T_o/T)$
- d) $T = -log(A_o/A)$
- e) $T = -log(A/A_o)$

2] Absorbances at λ = 546 nm were measured for a sample (A = 0.332) and that sample with a 0.050 mM analyte (A = 0.488). What is the concentration of analyte?

- a) 0.072 mM
- b) 0.120 mM
- c) 0.040 mM
- d) 0.211 mM
- e) 0.106 mM

3] The structure of EDTA is

4] What is the concentration of Ca^{2+} if we dissolved 0.100 M CaY^{2-} at pH 7.00?

- a) $7.4\times10^{\text{-6}}\,\text{M}$
- b) $9.9 \times 10^{-6} \text{ M}$
- c) 9.4×10^{-5} M
- d) 6.5×10^{-5} M
- e) 8.3×10^{-5} M

5] Which of the following allows the calculation of α_M for Ag⁺ in 0.100 M NH₃ at pH 6.50?

a)
$$\alpha_M = \frac{1}{1 + \beta_1 [NH_3] + \beta_2 [NH_3]^2}$$

b) $\frac{1}{\alpha_M} = 1 + \frac{\beta_2 \beta_1}{[H^+]^2}$
c) $\alpha_M = \frac{1 + \beta_1 [NH_3] + \beta_2 [NH_3]^2}{1}$
d) $\alpha_M = \frac{1 + \beta_1 [NH_3]}{1}$
e) $\frac{1}{\alpha_M} = 1 + \frac{1}{\beta_2 \beta_1 [NH_3]^2}$

6] Which of the following species is the strongest reducing agent?

	<u> AE_o (volts)</u>
NAD+ + 2H+ + 2 e- → NADH + H+	-0.320
OAA + 2H ⁺ + 2 e ⁻ → malate	-0.166
fumarate + 2H+ + 2 e-→ succinate	+0.031
1/2 O ₂ + 2H ⁺ + 2 e ⁻ → H ₂ O	+0.816

- a) H₂O
- b) NAD⁺
- c) H⁺
- d) NADH
- e) O₂

7] A pH electrode responded with a voltage of 0.433 V in a standardized pH 4.01 solution. What is the pH of an unknown if that pH electrode responds with a voltage of 0.257V?

a) 7.44
b) 6.21
c) 6.98
d) 8.45
e) 9.11

8] What is the cell potential between a Pt electrode and SCE when 5.00 mL of 0.0100 M Fe³⁺ is added to 5.00 mL of 0.0100 M Sn²⁺?

 $Fe^{3+} + e^{-} = Fe^{2+} \qquad E^{0} = 0.77 V$ $Sn^{4+} + 2e^{-} = Sn^{2+} \qquad E^{0} = 0.14 V$ a) 0.14 - E_{SCE}
b) 0.77 - E_{SCE}
c) 0.14 + E_{SCE}
d) 0.91 + E_{SCE}
e) 0.23 - E_{SCE}

9] What is the cell potential between a Pt electrode and SCE when 5.00 mL of 0.0100 M Fe³⁺ is added to 1.25 mL of 0.0100 M Sn²⁺?

- a) 0.14 E_{SCE}
- b) 0.42 + E_{SCE}
- c) 0.14 + E_{SCE}
- d) 0.77 E_{SCE}
- e) 0.85 E_{SCE}

10] At the equivalence point which of the following is true?

- a) [Fe³⁺] = 2 [Sn²⁺]
- b) 2 $[Fe^{3+}] = [Sn^{2+}]$
- c) $[Fe^{3+}] = [Sn^{2+}]^{1/2}$
- d) $[Fe^{3+}] = 2 [Sn^{4+}]$
- e) 2 $[Fe^{3+}] = [Sn^{4+}]$

11] Oxidations take place at the

- a) reference electrode
- b) anode
- c) cathode
- d) galvanic
- e) voltaic

12] The purpose of a reference electrode is to

a) to prevent mixing of the electrolyte solution.

b) to provide a means of ionic transport between the anode and cathode c) to enable the reductive process at the anode. d) to provide a stable potential in which an electrode reaction can be compared to known redox reaction. e) to provide a stable source of current.

13] It is advantageous to conduct EDTA titrations of metal ions in

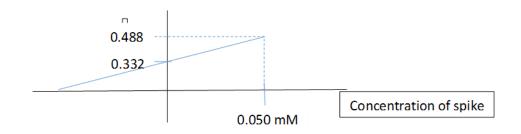
- a) acidic pH's to assist metal ion hydrolysis
- b) basic pH's to prevent metal ion hydrolysis
- c) basic pH's to maximize Y^{4-} fraction
- d) basic pH's to minimize Y⁴⁻ fraction
- e) acidic pH's to maximize Y^{4-} fraction

14] When considering separation column length (L) and resolution (Rs) in chromatography which of the following is true?

- a) Longer columns increase resolution where $Rs \propto L^{1/2}$
- b) A longer column is always better.
- c) Longer columns increase resolution where L \propto Rs
- d) Longer columns increase resolution where $Rs \propto L^2$
- e) Longer columns increase resolution where $L \propto Rs^{2/3}$

15] When considering mobile phase flow rate which is true?

- a) Faster mobile phase flow rate is always better.
- b) Slower mobile phase flow rate is always better.
- c) Faster flow rate will decrease band spreading due to mass transfer effects.
- d) Slower flow rate will decrease band spreading due to longitudinal diffusion.
- e) Slower flow rate will decrease band spreading due to mass transfer effects.


16] My Chem 254 Lab Section Meets

- a) Mornings at 8:30 am Sec 01
- b) Afternoons at 2:30 pm Sec 02
- c) Evenings at 6:30 pm Sec 03
- d) I am not in a lab this semester

Answers

-	-	SE NO. 2	PENCILO	NLY				JSE SUB				FO	RM N	0. 889	-Е	v	MAC	HINE	ONLY				Contraction of the local division of the loc	ECOR		
PART 1	• MAKE					• Oni • 163	y one m points r	ossible s ark per li naximum	ne on ke			NAME		_		K	EY					PART	1			
ш.	10000		A) (B)	-	D> <e< th=""><th>STUE SCOL</th><th></th><th>(30) (40</th><th>0 080 070 0 080 0 0 070 08 0 070 08</th><th></th><th></th><th>DATE</th><th></th><th></th><th></th><th></th><th>PER</th><th></th><th></th><th></th><th></th><th>TOTA</th><th>L</th><th></th><th></th><th></th></e<>	STUE SCOL		(30) (40	0 080 070 0 080 0 0 070 08 0 070 08			DATE					PER					TOTA	L			
CORE E ONLY)	Ŵ	Ŵ	Ŵ	Ŵ	Ŵ	Û	Q	Ŵ	Ŵ	Ŵ	Ŵ		Ŵ	Ŵ	Ŵ	Ŵ	Ŵ	Û	Ŵ	Ŵ	Q	Ŵ
1 S 20 20	¢		9 4	9		0	#	0	0		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
SUBJECTIVE ISTRUCTOR (90 (80 ((40 (30 ((8) (7) ((3) (2) ((3) (2) (ର୍ଜ୍ଦ (3	9	3	9	0	9		0	Q	9	9	0		0	0	9	9	0	0	9	0	0	0	0	0
SUBJ STRU G G G G G G G G G G G G G G G G G G G	6		9 (9	0	0	0		0	0	0		0			0	0	0	•	0			0	0	•	•
N 00 00 00 00 00 00 00 00 00 00 00 00 00	E%	3	3 1	þ	8	-	8	8	*	8	-	8	8	8	*	8	\$	3	8	8	8	8	8	\$	8	8
	*	- 0	N C	o	4	5	9	~	8	6	10	Ŧ	12	13	14	12	16	17	-	19	20	21	52	23	24	25
1111		1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

2] Absorbances at λ = 546 nm were measured for a sample (A = 0.332) and that sample with a 0.050 mM analyte (A = 0.488). What is the concentration of analyte?

Find x-int. $y = \{(0.488-0.332)/(0.050)\}x + 0.332\}$

x-int = 0.106 mM

4] What is the concentration of Ca^{2+} if we dissolved 0.100 M CaY^{2-} at pH 7.00?

$$\alpha_{Y4-} \text{ at pH} = 5.0e-4 \qquad \text{K}_{f}' = 5.0e-4(10^{10.69}) = 2.4e7$$

$$CaY^{2-} = Ca^{2+} + EDTA$$

$$0.100 \text{ M} \qquad 0 \qquad 0$$

$$-x \qquad +x \qquad +x \qquad +x$$

$$2.4e7 = (0.100 - x)/x^{2} = \cong 0.100 / x^{2}$$

$$x = 6.5e-5 \text{ M}$$

7] A pH electrode responded with a voltage of 0.433 V in a standardized pH 4.01 solution. What is the pH of an unknown if that pH electrode responds with a voltage of 0.257V?

E = const – 0.0592pH	0.433 = const – 0.0592(4.01)	const = 0.670
0.257 = 0.670 – 0.0592pH	рН = 6.98	

8] What is the cell potential between a Pt electrode and SCE when 5.00 mL of 0.0100 M Fe³⁺ is added to 5.00 mL of 0.0100 M Sn²⁺?

Fe³⁺ + e⁻ = Fe²⁺ E⁰ = 0.77 V Sn⁴⁺ + 2e⁻ = Sn²⁺ E⁰ = 0.14 V

5.00 mL (0.0100 M Fe³⁺) = 0.0500 mmol Fe³⁺

5.00 mL (0.0100 M Sn²⁺) = 0.0500 mmol Sn²⁺

Redox Rxn:	2Fe ³⁺	+ Sn ²⁺ =	2Fe ²⁺	+ Sn ⁴⁺				
	0.0500	0.0500 mmol	0	0				
	-2*0.0250	-0.0250	+2*0.0250	+0.0250 mmol				
	0	0.0250	0.0500	0.0250 mmol				

The Pt electrode will be governed by the Sn^{2+}/Sn^{4+} ratio in the Nernst Eqn.

 $E = 0.14 - 0.0592 \log [Sn^{2+}]/[Sn^{4+}] = 0.14 - 0.0592 \log (1) = 0.14$

 $E_{cell} = 0.14 - E_{SCE}$

9] What is the cell potential between a Pt electrode and SCE when 5.00 mL of 0.0100 M Fe³⁺ is added to 1.25 mL of 0.0100 M Sn²⁺?

5.00 mL (0.0100 M Fe³⁺) = 0.0500 mmol Fe³⁺

 $1.25 \text{ mL} (0.0100 \text{ M} \text{ Sn}^{2+}) = 0.0125 \text{ mmol} \text{ Sn}^{2+}$

Redox Rxn:	2Fe ³⁺	+ Sn ²⁺ =	2Fe ²⁺	+ Sn ⁴⁺
	0.0500	0.01250 mm	ol0	0
	-2*0.0125	-0.0125	+2*0.0125	+0.0125 mmol
	0.0250	0.00	0.0250	0.0125 mmol

The Pt electrode will be governed by the Fe^{2+}/Fe^{3+} ratio in the Nernst Eqn.

 $E = 0.77 - 0.0592 \log [Fe^{2+}]/[Fe^{3+}] = 0.77 - 0.0592 \log (1) = 0.77$

 $E_{cell} = 0.77 - E_{SCE}$