Chem 253 Exam 2 – October 12, 2016

1] Calculate the pH of 0.100 F weak diprotic acid H₂A where K_{a1} = 1.00 x10⁻⁴ and K_{a2} = 1.0x10⁻⁹.¹

2] Using the constants from problem 1 what is K for the following?²

 $A^{2-} + H_2O \rightleftharpoons HA^- + HO^-$

3] What is the solubility of AgCl ($K_{sp} = 1.8 \times 10^{-10}$) in 0.100 M KCl? ³

4] What is the solubility of Ag₂SO₄ (K_{sp} = 1.5x10⁻⁵). ⁴

5] What is the MBE for 0.1 F H₃AsO₄? $K_{a1} = 5.8 \times 10^{-3}$, $K_{a2} = 1.10 \times 10^{-7}$, $K_{a3} = 3.2 \times 10^{-12}$

6] What is the CBE for a solution that is 0.1 M MgCl₂ and 0.2 M in NaHCO₃? ⁶

7] A sample weighing 3.000 g is a mixture of Fe_2O_3 (MW = 159.69) and Al_2O_3 (MW = 101.96). A heated stream of H_2 gas converts the Fe_2O_3 to Fe(s) (AW = 55.85) and $H_2O(g)$ (MW = 18.02). The Al_2O_3 does not react. The sample is weighed again at 2.500 g. What is the mass fraction of Fe_2O_3 in the original sample?⁷

8] Given that $K_a = 7.5 \times 10^{-6}$ for a weak acid where you describe its best buffer region? ⁸

9] Given that a weak diprotic acid H₂A has $K_{a1} = 1.00 \times 10^{-4}$ and $K_{a2} = 1.0 \times 10^{-9}$, calculate the pH of 0.100 F NaHA.

10] For that weak acid in problem 9 the fraction in the form of A^{2-} at pH 8.50 is best represented as which of the following?

a)
$$\alpha A^{2-} = [H^+]^2 / [H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}$$

b) $\alpha A^{2-} = K_{a1}K_{a2} / [H^+] + [H^+]K_{a1} + K_{a1}K_{a2}$
c) $\alpha A^{2-} = [H^+]K_{a2} / [H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}$
d) $\alpha A^{2-} = K_{a1}K_{a2} / [H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}$
e) $\alpha A^{2-} = K_{a1}K_{a2} / [H^+]^2 + [H^+]K_{a2} + K_{a1}K_{a2}$

A 50.00 mL sample of 0.100 M weak diprotic acid H₂A with $K_{a1} = 1.00 \times 10^{-4}$ and $K_{a2} = 1.0 \times 10^{-9}$ is titrated with 0.100 M NaOH. Note – there is 5.00 mmol H₂A in that sample.

11] What is the pH of the titration solution when 25.00 mL of 0.100 M NaOH (2.50 mmol) is added? ¹¹

12] Which of the following allows calculation of the pH of the titration solution when 50.00 mL of 0.100 M NaOH (5.00 mmol) is added? 12

a)
$$pH = \frac{1}{2} (pK_{a1} + pK_{a2})$$

b) $K_w/K_{a1} = x^2 / (0.050 - x)$
c) $pH = pK_{a1}$
d) $K_{a1} = x^2 / (0.050 - x)$
e) $pH = pK_{a2}$

13] Which of the following allows calculation of the pH of the titration solution when 75.00 mL of 0.100 M NaOH (7.50 mmol) is added? 13

a)
$$pH = \frac{1}{2} (pK_{a1} + pK_{a2})$$

b) $K_w/K_{a1} = x^2 / (0.050 - x)$
c) $pH = pK_{a1}$
d) $K_{a1} = x^2 / (0.067 - x)$
e) $pH = pK_{a2}$

14] Which of the following allows calculation of the pH of the titration solution when 100.00 mL of 0.100 M NaOH (10.00 mmol) is added? 14

a)
$$pH = \frac{1}{2} (pK_{a1} + pK_{a2})$$

b) $K_w/K_{a2} = x^2 / (0.033 - x)$
c) $pH = pK_{a1}$
d) $K_{a2} = x^2 / (0.033 - x)$
e) $pH = pK_{a2}$

Answers

¹ **d.** $K_{a1} = 1.00 \times 10^{-4} >> K_{a2}$ is 1×10^{-9} so only K_{a1} is important. H_2A = H^+ + HA-0.100 M 0 0 -X +χ +χ $K_{a1} = 1.00 \text{ x}10^{-4} = x^2/0.100 \text{ - x} = x^2/0.100$ x = 3.16e-3 pH = 2.500² **a.** This is $K_{b1} = K_w/K_{a2} = 1.00e-14/1.0e-9 = 1.0e-5$ ³ b. CI^{-} AgCl(s) ⇄ Ag⁺ + 0.100 0 +χ +χ $Ksp = 1.8e-10 = x(0.10+x) \cong x(0.100) x = 1.8e-9 M$ ⁴ a. 2Ag⁺ SO4²⁻ Ag₂SO₄ ₹ ++2x +χ $(2x)^2x = 4x^3 = 1.5e-5$ x = 1.6e-2 M ⁵ e. $0.1 \text{ F H}_3\text{AsO}_4 = [\text{H}_3\text{AsO}_4] + [\text{H}_2\text{AsO}_4^-] + [\text{HAsO}_4^{2-}] + [\text{AsO}_4^{3-}]$ ⁶ c. Note $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$ and $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^ 2[Mg^{2+}] + [Na^+] + [H^+] = [HCO_3^{--}] + 2[CO_3^{2-}] + [OH^{--}] + [CI^{--}]$

⁷ e. 0.500 g O (mol O/15.999 g) (mol Fe₂O₃/ 3 mol O) (159.69 g / mol Fe₂O₃) (100 / 3.000) = 55.4%

⁸ c. $K_a = 7.5 \times 10^{-6}$ pKa = 5.12 general rule buffer region +/- 1 pH with pKa so 4.12 to 6.12

⁹ **b.** High formal concentrations mean that $pH = \frac{1}{2}(pKa1 + pKa2)$ works well.

 $pH = \frac{1}{2}(4.000 + 9.00) = 6.50$

¹⁰ **d.** $\alpha^{2-} = K_{a1}K_{a2} / [H^+]^2 + [H^+]K_{a1} + K_{a1}K_{a2}$

¹¹ a. $\frac{1}{2}$ first eq pt. of $[H_2A] = [HA^-]$ Ka1 = $[H^+]$ or pH = pKa = 4.00 1st buffer region

 12 a. This is the first eq pt. where initially all HA- or [HA-] = 5.00 mmol/ 100.00 mL = 0.050 M

Kb2 HA- + H₂O = H₂A + HA- Kb2 and Ka1 HA- = H⁺ + A²⁻

Amphoteric Species $pH = \frac{1}{2}(pKa1 + pKa2) = 6.50$

 13 e. 2.50 mmol past 1^{st} eq pt. So we have 2.50 mmol HA- and 2.50 mmol of A^{2-} 2^{nd} buffer region

 $K_{a2} = [H^+][A^{2-}] / [HA^-]$ and $[A^{2-}] = [HA^-]$ so pH = pKa2

¹⁴ **b.** 2^{nd} eq pt. so $[A^{2-}] = 5.00 \text{ mmol} / 150.00 = 0.0333 \text{ M}$

Kb1	A ²⁻	+	H2O	=	HA-	+	OH-
	0.033		-		0		0
	-x				+x		+x

 $Kb1 = K_w/K_{a2} = x^2 / (0.033 - x) = 1.00e-14/1.00e-9 = 1.00e-5$ X = 5.745e-4 pH = 10.76