2 - Equilibria Problem Set

## The Basics

1] Calculate the solubility of $\mathrm{PbCl}_{2}\left(\mathrm{~K}_{\text {sp }}=1.7 \times 10^{-5}\right)$ in the presence of $0.122 \mathrm{M} \mathrm{NaCl} .{ }^{1}$
2] Calculate the $K_{s p}$ of barium sulfate (MW 233) if its solubility is measured as $0.0023 \mathrm{mg} / \mathrm{mL}{ }^{2}{ }^{2}$
3] What is the molar solubility of $\mathrm{PbCl}_{2}, \mathrm{~K}_{\mathrm{sp}}=1.7 \mathrm{e}-5$ ? $^{3}$
4] What is the solubility of barium carbonate? ${ }^{4} \mathrm{BaCO}_{3} \mathrm{Ksp}=5.0 \mathrm{e}-9$
5] What is the solubility of copper (I) sulfide in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$ ? ${ }^{5} \mathrm{Cu}_{2} \mathrm{~S} \mathrm{Ksp}=3 \mathrm{e}-49$
6] What is the solubility of $\mathrm{PbCl}_{2}$ in 0.10 M NaCl ? ${ }^{6}$
7] Calculate the pH of a solution of 0.025 M acetic acid and 0.025 M sodium acetate. ${ }^{7}$
8] What the pH of $\left[\mathrm{H}^{+}\right]=3.35 \mathrm{e}-6$ ? $^{8}$
9] Calculate the pH of a solution of 0.025 M acetic acid, $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} 9$
10] What is the pH of a solution of 0.100 M HCl ? ${ }^{10}$
11] What is the pH of 0.10 M benzoic acid? ${ }^{11} \mathrm{~K}_{\mathrm{a}}=6.28 \mathrm{e}-5$

Benzoic acid


12] The concentration of $\mathrm{H}^{+}$in a pH 6.772 solution is $\qquad$ 12

13] The pH of a solution of a 0.100 M weak acid (HA) $\mathrm{K}_{\mathrm{a}}=2.7 \times 10^{-6}$ is $\qquad$ 13

14] What is $\left[\mathrm{H}^{+}\right]$when a solution is $\mathrm{pH}=4.653$ ? ${ }^{14}$
15] The solubility of the salt $\mathrm{MA}_{2}\left(\mathrm{~K}_{\text {sp }}=8.9 \times 10^{-17}\right)$ is $\qquad$ 15

$$
\mathrm{MA}(\mathrm{~s})=\mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{~A}^{-}(\mathrm{aq})
$$

16] What is the solubility of a salt, $A B\left(K_{\text {sp }}=7.2 \times 10^{-12}\right)$ in the presence of $0.10 \mathrm{M} \mathrm{B}^{-}$? ${ }^{16}$
17] The $K_{a}$ of a weak acid (HA) is $7.2 \times 10^{-6}$. What is $K_{b}$ for the following reaction? ${ }^{17}$

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HA}+\mathrm{OH}^{-}
$$

18] The concentration of $\mathrm{H}^{+}$in a pH 8.55 solution is ${ }^{18}$
19] What is the pH of a 2.11 M solution of $\mathrm{HNO}_{3}$ ? ${ }^{19}$
20] What is the $\mathrm{H}^{+}$concentration of a solution that has a pH of $5.32 ?^{20}$
21] What is $K$ for this reaction? ${ }^{21}$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{SO}_{3}=\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+} & \mathrm{K}=? \\
\mathrm{H}_{2} \mathrm{SO}_{3}=\mathrm{HSO}_{3}^{-}+\mathrm{H}^{+} & \mathrm{K}=1.23 \mathrm{e}-2 \\
\mathrm{HSO}_{3}^{-}=\mathrm{SO}_{3}^{2-}+\mathrm{H}^{+} & \mathrm{K}=6.6 \mathrm{e}-8
\end{array}
$$

## Charge Balance and Mass Balance

22] Write down a valid mass balance for a solution for $0.10 \mathrm{M} \mathrm{NaHCO}_{3} .{ }^{22}$
23] What is the charge balance for a solution of $0.1 \mathrm{M} \mathrm{MgCl}_{2}$ ? ${ }^{23}$
24] What is the charge balance for a solution of $0.10 \mathrm{M} \mathrm{NaHCO}_{3}$ ? ${ }^{24}$
$K_{a 1}=6.352 \quad K_{a 2}=10.329$
$\mathrm{HCO}_{3}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$

$$
\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}
$$

25] What is the CBE for the follow reaction sequence? ${ }^{25}$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}=\mathrm{H}^{+}+\mathrm{HS}^{-} \\
& \mathrm{HS}^{-}=\mathrm{H}^{+}+\mathrm{S}^{2-} \\
& \mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

26] Write a charge balance equation for a solution containing $\mathrm{NaNO}_{3}, \mathrm{KCl}$, and $\mathrm{Na}_{2} \mathrm{SO}_{4} .{ }^{26}$
27] What is the mass balance equation for the following sequence of reactions? ${ }^{27}$

$$
\begin{array}{ll}
\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{K}_{\mathrm{sp}}=1.3 \mathrm{e}-8 \\
\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{OH}^{-} \mathrm{K}_{\mathrm{b} 1} &
\end{array}
$$

$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \mathrm{Kb}_{2}$
28] What is the charge balance equation for the reaction sequence: ${ }^{28}$
$\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \quad \mathrm{K}_{\mathrm{sp}}=1.3 \mathrm{e}-8$
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}+\mathrm{OH}^{-} \mathrm{K}_{\mathrm{b} 1}$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{OH}^{-} \mathrm{K}_{\mathrm{b} 2}$
29] What is the CBE for the follow reaction sequence? ${ }^{29}$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}=\mathrm{H}^{+}+\mathrm{HS}^{-} \\
& \mathrm{HS}^{-}=\mathrm{H}^{+}+\mathrm{S}^{2-} \\
& \mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-}
\end{aligned}
$$

30] What is the MBE for $1.00 \mathrm{e}-3 \mathrm{M}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ for the following reaction sequence: ${ }^{30}$

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}+\mathrm{Cl}^{-}} \\
& \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}=\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}+\mathrm{NH}_{3} \\
& \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}=\mathrm{Ag}^{+}+\mathrm{NH}_{3}
\end{aligned}
$$

31] What is the MBE for the following sequence of reactions? ${ }^{31}$

$$
\begin{array}{ll}
\mathrm{MgF}_{2}=\mathrm{Mg}^{2+}+2 \mathrm{~F}^{-} & \mathrm{K}_{\mathrm{sp}} \\
\mathrm{~F}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HF}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b}} \\
\mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Mg}(\mathrm{OH})^{+}+\mathrm{H}^{+} & \beta
\end{array}
$$

32] What is the charge balance for a solution of $0.10 \mathrm{M} \mathrm{NaHCO}_{3}$ ? ${ }^{32}$

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a} 1} \mathrm{H}_{2} \mathrm{CO}_{3}=6.352 \quad \mathrm{pK}_{\mathrm{a} 2} \mathrm{HCO}_{3}^{-}=10.329 \\
& \mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \\
& \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}
\end{aligned}
$$

33] Write a charge balance equation of for a solution of 0.10 M phthalic acid. ${ }^{33}$

$\mathrm{K}_{\mathrm{a} 1}=1.12 \mathrm{e}-3 \quad \mathrm{~K}_{\mathrm{a} 2}=3.90 \mathrm{e}-6$
34] What is the charge balance equation for a solution that is saturated with $\mathrm{SrF}_{2}$ ? ${ }^{34}$
$\mathrm{K}_{\text {sp }}\left(\mathrm{SrF}_{2}\right)=2.9 \times 10^{-9} \quad \mathrm{~K}_{\mathrm{a}}(\mathrm{HF})=6.8 \times 10^{-4}$
35] What is the mass balance equation for a solution that is initially 0.1 M NaF ? $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=6.8 \mathrm{e}-4{ }^{35}$

Solubility
36] What is the solubility of $\mathrm{SrF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=2.8 \mathrm{e}-9\right)$ at pH 4.00 ? $\mathrm{HF} \mathrm{K} \mathrm{K}_{\mathrm{a}}=6.76 \mathrm{e}-4 .{ }^{36}$
37] What best explains the solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ ? ${ }^{37}$
38] What is the molar solubility of $\mathrm{BaF}_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.7 \mathrm{e}-6\right)$ at pH 7.20 ? $\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=6.8 \mathrm{e}-4^{38}$
39] What is the solubility of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}\left(\mathrm{~K}_{\text {sp }}=1.2 \times 10^{-18}\right)$ in 0.20 M NaCl ? ${ }^{39}$
40] The $\mathrm{K}_{\text {sp }}$ of $\mathrm{PbI}_{2}$ is $7.9 \mathrm{e}-9$. What is the concentration of $\mathrm{I}^{-}$required to precipitate $99.99 \%$ of $1.6 \mathrm{e}-4 \mathrm{M} \mathrm{Pb}^{2+}(\mathrm{aq})$ ? ${ }^{40}$

41] Consider a saturated solution of $\mathrm{R}_{3} \mathrm{NH}^{+} \mathrm{Br}^{-}$, where R is an organic group. Find the solubility of $\mathrm{R}_{3} \mathrm{NH}^{+} \mathrm{Br}^{-}$in a solution maintained at $\mathrm{pH} 9.50 .{ }^{41}$
$\mathrm{R}_{3} \mathrm{NH}^{+} \mathrm{Br}^{-}(\mathrm{s}) \rightleftarrows \mathrm{R}_{3} \mathrm{NH}^{+}+\mathrm{Br}^{-} \quad \mathrm{K}_{\mathrm{sp}}=4.0 \times 10^{-8}$
$\mathrm{R}_{3} \mathrm{NH}^{+} \rightleftarrows \mathrm{R}_{3} \mathrm{~N}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a}}=2.3 \times 10^{-9}$
42] What is the aqueous solubility of AgCl at $\mathrm{pH} 4.00\left(\mathrm{~K}_{\text {sp }}=1.8 \mathrm{e}-11\right)$ ? ${ }^{42}$
43] A mixture of AgCl ( $\mathrm{MW} 143.35, \mathrm{~K}_{\mathrm{sp}}=1.8 \mathrm{e}-10$ ) and AgBr ( $\mathrm{MW} 187.9, \mathrm{~K}_{\mathrm{sp}}=5.0 \mathrm{e}-13$ ) weighs 2.000 g . This mixture is reduced to silver metal (AW 107.9), which weighs 1.300 g . Calculate the mass of AgCl in the original sample. ${ }^{43}$

44] A 0.2795 g sample of the insecticide containing lindane $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}\right.$, MW 290.8) and DDT $\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}\right.$, MW 354.5) was burned in purified air. The products of this reaction, $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and HCl were passed through a solution of $\mathrm{NaHCO}_{3}$ that captured HCl . Chloride was precipitated as AgCl with a solution of excess $\mathrm{AgNO}_{3}(\mathrm{aq})$. The AgCl was dried and weighed, 0.7161 g . Calculate the percent lindane and DDT in the sample. ${ }^{44}$

45] Calculate the concentration of $\mathrm{Ba}^{2+}$ in solution when $15.00-\mathrm{mL}$ of $0.200 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$ is added to $25.00-\mathrm{mL}$ of $0.100 \mathrm{M} \mathrm{BaCl}_{2}(\mathrm{aq}) .{ }^{45}$

46] What is the solubility of $\mathrm{CaF}_{2}$ in 0.100 M HCl . What are the equilibrium concentrations HF and $\mathrm{F}^{-}$under these conditions? ${ }^{46}$

47] What is the solubility of $\mathrm{MgCO}_{3}$ at pH 5.00 ? ${ }^{47}$
48] The $\mathrm{K}_{\text {sp }}$ of AgCl is $1.8 \mathrm{e}-10$. What is the concentration of $\mathrm{Cl}^{-}$required to remove $99.99 \%$ of $1.0 \mathrm{e}-3 \mathrm{M}$ $\mathrm{Ag}^{+}$? ${ }^{48}$

49] The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgCN}(\mathrm{s})$ is $2.2 \mathrm{e}-16$. The $\mathrm{K}_{\mathrm{a}}$ of HCN is $6.2 \mathrm{e}-10$. What would you expect with AgCN molar solubility and pH ? ${ }^{49}$

Answers

```
\mp@subsup{}{}{1}x(0.122+2x)}\mp@subsup{)}{}{2}=1.7e-5;x=1.7e-5/(0.122+2x); let 2x=0; x1=1.14e-3 then \mp@subsup{x}{2}{}=1.10e-3 and
x}=1.10\textrm{e}-
29.7 < 10-11
3 }\mp@subsup{}{}{3}\mp@subsup{\textrm{K}}{\mathrm{ sp }}{}=[\mp@subsup{\textrm{Pb}}{}{2+}][\mp@subsup{\textrm{Cl}}{}{-}\mp@subsup{]}{}{2}\quad(2x\mp@subsup{)}{}{2}\textrm{x}=1.7\textrm{e}-5\quad\textrm{x}=1.6\textrm{e}-2\textrm{M
```



```
    -- +
        x}=5.0e-9 x=7.1e-5 M
5 Cu2S = 2Cu+}+\quad\mp@subsup{\textrm{S}}{}{2-
\begin{tabular}{lll}
-- & 0 & 0.1 M \\
- & \(+2 x\) & \(+x\) \\
-- & \(2 x\) & \(0.1+x\)
\end{tabular}
        (2x)}\mp@subsup{)}{}{2}(0.1+x)\cong4\mp@subsup{x}{}{2}(0.1)=3e-49\quadx=9e-2
' (0.10+2x)}\mp@subsup{}{}{2}x=1.7e-5; (0.10) 2 x = 1.7e-5; x = 1.7e-3 M
74.74
8 pH=-log(3.35e-6)=5.475
9 3.17
```

${ }^{10} 1.000 \quad$ be careful of s.f.

11

| HA | $=$ | $\mathrm{H}+$ | + |
| :--- | :--- | :--- | :--- |
| 0.10 M | 0 | $\mathrm{~A}-$ |  |
| -x |  | $+x$ |  |
| $0.10-x$ | $x$ |  | $+x$ |
|  |  |  | $x$ |

$x^{2} /(0.10-x) \cong x^{2} / 0.10=6.28 e-5 \quad x=\left[H^{+}\right]=2.5 e-3$
$\mathrm{pH}=\mathbf{2 . 6 0}$
${ }^{12} 1.69 \times 10^{-7} \mathrm{M}$
${ }^{13} \mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}^{-}$
0.100-x +x +x
$x^{2} / 0.100-x=2.7 e-6 \quad x=5.2 e-4 M$
$\mathrm{pH}=3.28$

| ${ }^{14} \mathrm{pH}=4.653$ | $\left[\mathrm{H}^{+}\right]=10^{-4.653}=\mathbf{2 . 2 2 e - 5 ~ M}$ |  |
| :--- | :--- | :--- |
| ${ }^{15} \mathrm{MA}_{2}=$ | $\mathrm{M}^{2+} \quad+$ | $2 \mathrm{~A}^{-}$ |
| -- | +x | +2 x |

$(2 x)^{2} x=8.9 e-17 \quad x=2.8 e-6 M$
${ }^{16} \mathrm{AB}=\mathrm{A}^{+}+\mathrm{B}^{-}$
-- $\quad$ x $\quad 0.10+x$
$\mathrm{x}(0.10+\mathrm{x}) \approx 0.10 \mathrm{x}=7.2 \mathrm{e}-12$
$x=7.2 \mathrm{e}-11 \mathrm{M}$
${ }^{17} \mathrm{~K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad \mathrm{K}_{\mathrm{b}}=1.00 \mathrm{e}-14 / 7.2 \mathrm{e}-6=1.4 \mathrm{e}-9$
${ }^{18} 2.8 \mathrm{e}-9 \mathrm{M}$ watch S.F.
${ }^{19}-0.324$ watch S.F.
${ }^{20} 4.8 \times 10^{6} \mathrm{M}$ watch S.F.
${ }^{21} 8.1 \mathrm{e}-10$
${ }^{22} 0.10 \mathrm{M}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
${ }^{23} \mathbf{2}\left[\mathrm{Mg}^{2+}\right]=[\mathrm{Cl}]$
${ }^{24}\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
${ }^{25}\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{2-}\right]$
${ }^{26}\left[\mathrm{Na}^{+}\right]+\left[\mathrm{K}^{+}\right]=\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{Cl}^{-}\right]+2\left[\mathrm{SO}_{4}{ }^{2-}\right]$
${ }^{27}\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$
${ }^{28} 2\left[\mathrm{Ca}^{2+}\right]=2\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]+\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]+\left[\mathrm{OH}^{-}\right]$
${ }^{29}\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{2-}\right]$
${ }^{30} 1.00 \mathrm{e}-3 \mathrm{M}=\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]+\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+}\right]+\left[\mathrm{Ag}^{+}\right]$
${ }^{31} 2\left[\mathrm{Mg}^{2+}\right]+2\left[\mathrm{Mg}(\mathrm{OH})^{+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]$
${ }^{32}\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
${ }^{33}\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~A}^{2-}\right]+\left[\mathrm{HA}^{-}\right]$
${ }^{34} \mathrm{SrF}_{2}(\mathrm{~s})=\mathrm{Sr}^{2+}+2 \mathrm{~F}^{-}$
$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HF}+\mathrm{OH}^{-}$
$\mathrm{H}_{2} \mathrm{O}=\mathrm{H}^{+}+\mathrm{OH}^{-}$
CBE: $2\left[\mathrm{Sr}^{2+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
${ }^{35} \mathrm{Rxn}$ Seq: $\quad \mathrm{NaF} \rightarrow \mathrm{Na}^{+}+\mathrm{F}^{-}$

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HF}+\mathrm{OH}^{-} \quad \mathrm{MBE}: \mathbf{0 . 1} \mathrm{M}=\left[\mathrm{Na}^{+}\right]=[\mathrm{F}]+[\mathrm{HF}]
$$

${ }^{36} \mathrm{SrF}_{2}(\mathrm{~s})=\mathrm{Sr}^{2+}+2 \mathrm{~F}^{-} \quad \mathrm{K}_{\text {sp }}$

$$
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HF}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}
$$

$$
\mathrm{MBE}: \quad 2\left[\mathrm{Sr}^{2+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]
$$

$$
\mathrm{pH}=4.00 \rightarrow[\mathrm{OH}-]=1.0 \mathrm{e}-10 \mathrm{M}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=[\mathrm{HF}]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{F}^{-}\right] \rightarrow[\mathrm{HF}]=0.1479\left[\mathrm{~F}^{-}\right] \\
& 2\left[\mathrm{Sr}^{2+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]=1.1479\left[\mathrm{~F}^{-}\right] \# 1 \\
& \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \rightarrow[\mathrm{~F}]=\left(\mathrm{Ksp} /\left[\mathrm{Sr}^{2+}\right]\right)^{1 / 2} \# 2
\end{aligned}
$$

Sub 2 into 1

$$
\begin{aligned}
& 2\left[\mathrm{Sr}^{2+}\right]=1.1479\left(\mathrm{Ksp}^{2} /\left[\mathrm{Sr}^{2+}\right]\right)^{1 / 2}\left[\mathrm{Sr}^{2+}\right]^{3}=9.52 \mathrm{e}-10 \quad\left[\mathrm{Sr}^{2+}\right]=\mathrm{s}=9.8 \mathrm{e}-4 \mathrm{M} \\
& { }^{37}\left[\mathrm{Ag}^{+}\right] / 2 \text { or }\left[\mathrm{SO}_{4}{ }^{2-}\right] \\
& \begin{array}{c}
{ }^{38} \mathrm{MBE}: 2\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}] \quad \&\left[\mathrm{H}^{+}\right]=6.31 \mathrm{e}-8 \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=1.58 \mathrm{e}-7 \\
\mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=1.7 \mathrm{e}-6 \\
\underline{\mathrm{~K}}_{\mathrm{a}}(\mathrm{HF})=\left[\mathrm{H}^{+}\right][\mathrm{F}-] /[\mathrm{HF}]=6.8 \mathrm{e}-4
\end{array}
\end{aligned}
$$

3 variables: $\left[\mathrm{Ba}^{2+}\right],[\mathrm{F}-],[\mathrm{HF}]$
$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HF}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=1.00 \mathrm{e}-14 / 6.8 \mathrm{e}-4=1.4 \underline{\mathrm{Z}} \mathrm{e}-11$

Using $K_{b}$ solve for [HF]
$[\mathrm{HF}]=\mathrm{K}_{\mathrm{b}}\left[\mathrm{F}^{-}\right] /\left[\mathrm{OH}^{-}\right] \quad$ will sub into MBE

$$
\begin{aligned}
& 2\left[\mathrm{Ba}^{2+}\right]=[\mathrm{F}]+[\mathrm{HF}] \\
& 2\left[\mathrm{Ba}^{2+}\right]=[\mathrm{F}]+\mathrm{K}_{\mathrm{b}}[\mathrm{~F}] /\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Sub all knowns into above

$$
\begin{aligned}
& 2\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{F}^{-}\right]+1.4 \underline{\mathrm{e}}-11^{*}\left[\mathrm{~F}^{-}\right] / 1.5 \underline{8} \mathrm{e}-7 \\
& 2\left[\mathrm{Ba}^{2+}\right] \cong\left[\mathrm{F}^{-}\right] \quad \text { sub into } \mathrm{K}_{\mathrm{sp}}
\end{aligned}
$$

| $\mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right][\mathrm{F}]^{2}=\left[\mathrm{Ba}^{2+}\right]\left(2\left[\mathrm{Ba}^{2+}\right]\right)^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left[\mathrm{Ba}^{2+}\right]=(\mathrm{Ksp} / 4)^{1 / 3}=7.5 \mathrm{e}-3 \mathrm{M}$ |  |  |  |
| ${ }^{39} \mathrm{Hg}_{2} \mathrm{Cl}_{2}=$ | $\mathrm{Hg}_{2}{ }^{\text {+ }}$ | $+2 \mathrm{Cl}^{-}$ |  |
| -- | 0 | 0.20 |  |
|  | +x | +2x |  |
| -- | x | 0.20+2x |  |
| $1.2 \times 10^{-18}=x(0.20+2 x)^{2}$ |  |  |  |
| $1.2 \times 10^{-18} \approx x(0.20)^{2}$ |  |  |  |
| $x=3.0 \mathrm{e}-17$ |  |  |  |
| ${ }^{40} 7.9 \mathrm{e}-9=(1-0.9999)[1.6 \mathrm{e}-4]\left[\mathrm{I}^{-}\right]^{2}$ |  |  | $[\mathrm{I}]=0.70 \mathrm{M}$ |
| ${ }^{41}$ MBE: | $\left[\mathrm{Br}{ }^{-}\right]=\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]+\left[\mathrm{R}_{3} \mathrm{~N}\right] \# 1$ |  |  |
|  | $\mathrm{K}_{\mathrm{a}}=[$ | /[ $\left.\mathrm{R}_{3} \mathrm{NH}^{+}\right]$ | \#2 |
|  | $\mathrm{K}_{\text {sp }}=[$ | $\mathrm{Br}^{-}$ | \#3 |
|  | 3 variables, 3 eqn |  |  |
|  | $[\mathrm{H}+]=10^{-9.50}=3.2 \mathrm{e}-10$ |  |  |
|  | If solve for [ $\mathrm{Br}^{-}$] we find the solubility of $\mathrm{R}_{3} \mathrm{NH}^{+} \mathrm{Br}$ |  |  |
|  | Sub into MBE narrow it down to 2 variable |  |  |
|  | $\left[\mathrm{R}_{3} \mathrm{~N}\right]=\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]$ |  |  |
|  | $\mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=7.19\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]$ |  |  |
|  | $\left[\mathrm{Br}{ }^{-}\right]=\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]+\left[\mathrm{R}_{3} \mathrm{~N}\right]$ |  |  |
|  | $[\mathrm{Br}]=\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]+7.19\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]$ |  |  |
|  | $=8.19\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]$ |  |  |
|  | $\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]=\left[\mathrm{Br}^{-}\right] / 8.19$ |  |  |
|  | Sub in |  |  |

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{R}_{3} \mathrm{NH}^{+}\right]\left[\mathrm{Br}^{-}\right]=4.0 \times 10^{-8} \\
& =\left[\mathrm{Br}^{-}\right]^{2} / 8.19
\end{aligned}
$$

$\left[\mathrm{Br}^{-}\right]=5.7 \mathrm{e}-4$
$\begin{array}{lll}{ }^{42} \mathrm{AgCl} \rightleftarrows & \mathrm{Ag}^{+} & + \\ \mathrm{Cl}^{-} \\ -- & x & \end{array}$
$\mathrm{K}_{\text {sp }}=\mathrm{x}^{2}=1.8 \mathrm{e}-11 \quad \mathrm{x}=4.2 \mathrm{e}-6$
${ }^{43} \mathrm{xg} \mathrm{AgCl}+y \mathrm{~g} \mathrm{AgBr}=2.000 \mathrm{~g}$
$x g$ AgCl*(mol AgCl/143.35 g)*(mol Ag/mol AgCl)*(107.9 g/mol) $=0.7527 \mathrm{xg} \mathrm{Ag}$
y $g \mathrm{AgCl}{ }^{*}(\mathrm{~mol} \mathrm{AgBr} / 187.9 \mathrm{~g})^{*}(\mathrm{~mol} \mathrm{Ag} / \mathrm{mol} \mathrm{AgBr})^{*}(107.9 \mathrm{~g} / \mathrm{mol})=0.5742 \mathrm{yg} \mathrm{Ag}$
$0.7527 x g A g+0.5742 y g A g=1.300 g$
$y=2.000-x$ sub into above
$0.7527 x+0.5742(2.000-x)=1.300 g$
mass $\mathrm{Ag}=0.849 \mathrm{~g}$
${ }^{44} 2$ equations:

$$
\text { Mass lindane + Mass DDT }=0.2795 g
$$

Mass AgCl from lindane + Mass AgCl from $D D T=0.7161 \mathrm{~g} \quad \# 2$
Let $x=$ mass lindane and $y=$ mass DDT
$x+y=0.2795 \quad \# 3$
mass AgCl from lindane $=x \times \frac{\text { mol lindane }}{290.8 \mathrm{~g}} \times \frac{6 \mathrm{~mol} \mathrm{AgCl}}{\text { mol lindane }} \times \frac{143.35 \mathrm{~g}}{\mathrm{~mol} \mathrm{AgCl}}=2.958 x$
mass AgCl from $D D T=y \times \frac{\mathrm{mol} \mathrm{DDT}}{354.5 \mathrm{~g}} \times \frac{5 \mathrm{~mol} \mathrm{AgCl}}{\mathrm{mol} \mathrm{DDT}} \times \frac{143.35 \mathrm{~g}}{\mathrm{~mol} \mathrm{AgCl}}=2.022 y$

Sub into \#3 we have
Solve for $x$ in \#3

$$
2.958 x+2.022 y=0.7161
$$

\#4

$$
x=0.2795-y \text { and sub into \#4 }
$$

$$
\begin{aligned}
& 2.958(0.2795-y)+2.022 y=0.7161 \\
& y=0.1183 g \text { DDT } \\
& x=0.1612 g \text { lidane }
\end{aligned}
$$

$\%$ lindane $=0.1612 / 0.2795 * 100=57.68 \%$
$\% D D T=100-57.68=42.31 \%$
${ }^{45} \mathrm{Rxn}: \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightleftarrows \mathrm{BaCrO}_{4}(\mathrm{~s})+2 \mathrm{KCl}(\mathrm{aq})$
Must find limiting reagent.
$25.00-\mathrm{mL}^{*} 0.100 \mathrm{M} \mathrm{BaCl}_{2}=2.50 \mathrm{mmol} \mathrm{Ba}^{2+}$
$15.00-\mathrm{mL}$ of $0.200 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}=3.00 \mathrm{mmol} \mathrm{CrO}_{4}{ }^{2-}$
$2.00 \mathrm{mmol} \mathrm{Ba}{ }^{2+}$ must limiting reagent. Left over $\mathrm{CrO}_{4}{ }^{2-}$ :
$3.00-2.50 \mathrm{mmol}=0.50 \mathrm{mmol} \mathrm{CrO}_{4}{ }^{2-}$
$\left[\mathrm{CrO}_{4}{ }^{2-}\right]=0.50 \mathrm{mmol} / 40.0-\mathrm{mL}=1.25 \mathrm{e}-2 \mathrm{M}$
Solubility Reaction:

| $\mathrm{BaCrO}_{4}(\mathrm{~s})$ | $\rightleftarrows \mathrm{Ba}^{2+}+$ | $\mathrm{CrO}_{4}{ }^{2-}$ |
| :--- | :--- | :--- |
| -- | 0 | $1.2 \underline{5} \mathrm{e}-2$ |
| -- | $+x$ | $+x$ |

$\mathrm{K}_{\mathrm{sp}}=2.1 \mathrm{e}-10$
$2.1 e-10=x(1.2 \underline{5} e-2-x) \cong x(1.2 \underline{5} e-2)$
$x=1.7 e-8 M$
${ }^{46}$ Rxns: $\mathrm{CaF}_{2} \rightleftarrows \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$

$$
\begin{gathered}
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HF}+\mathrm{OH}^{-} \\
\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{OH}^{-} \\
\text {MBE: } 2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}]
\end{gathered}
$$

$\left[\mathrm{H}^{+}\right]=0.100 \mathrm{M} ;\left[\mathrm{OH}^{-}\right]=1.00 e-13$
$K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[F^{-}\right]^{2}=3.9 e-11 \quad K_{a}$
$(H F)=\left[H^{+}\right]\left[F^{-}\right] /[H F]=6.8 e-4$
$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HF}+\mathrm{OH}^{-}$
$K_{b}=K_{w} / K_{a}$
$=1.00 e-14 / 6.8 e-4=1.4 \underline{Z} e-11$
Using $K_{b}$ solve for [HF]
$[H F]=K_{b}\left[F^{-}\right] /\left[\mathrm{OH}^{-}\right] \quad$ will sub into $M B E$

$$
\begin{aligned}
& 2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{F}^{-}\right]+[\mathrm{HF}] \\
& 2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{F}^{-}\right]+\mathrm{K}_{b}\left[\mathrm{~F}^{-}\right] /\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Sub all knowns into above
$2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{F}^{-}\right]+1.4 \underline{\mathrm{Z}} \mathrm{e}-11^{*}\left[\mathrm{~F}^{-}\right] / 1.00 e-13$
$2\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{F}^{-}\right]+147\left[\mathrm{~F}^{-}\right]=148\left[\mathrm{~F}^{-}\right]$
$\left[\mathrm{Ca}^{2+}\right][\mathrm{F}-]^{2}=3.9 e-11$
$74\left[F^{-}\right]^{3}=3.9 e-11$
$[F-]=8.08$ e-5
From $K_{a}$
$[H F]=\left[H^{+}\right][F-] / 6.8 e-4$
$=1.00 e-1 * 8.08 e-5 / 6.8 e-4$
$[H F]=1.2 e-2$
From MBE $\quad\left[\mathrm{Ca}^{2+}\right]=1 / 2\left[F^{-}\right]+1 / 2[H F]$
$=1 / 2 * 8.1 e-5+1 / 2 * 1.2 e-2=6.0 e-3$
From $K_{s p}$
${ }^{47}$ MBE: $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{OH}^{-}\right]=1.00 \mathrm{e}-9$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=3.5 \mathrm{e}-8$
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}=1.00 \mathrm{e}-14 / 4.69 \mathrm{e}-11=$
$2.13 \mathrm{e}-4=\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{b} 2}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 1}=1.00 \mathrm{e}-14 / 4.45 \mathrm{e}-7=$

## $2.25 \mathrm{e}-8=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{HCO}_{3}^{-}\right]$

Using $K_{b 1}$ solve for $\left[\mathrm{HCO}_{3}{ }^{-}\right.$]
$\left[\mathrm{HCO}_{3}^{-}\right]=\mathrm{K}_{\mathrm{b} 1}\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{OH}^{-}\right]$
will sub into MBE
Using $\mathrm{K}_{\mathrm{b} 2}$ solve for $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\mathrm{K}_{\mathrm{b} 2}\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{OH}^{-}\right]$
$=K_{b 1} K_{b 2}\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{OH}^{-}\right]^{2}$
Sub both of above into MBE
$\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]+\mathrm{K}_{\mathrm{b} 1}\left[\mathrm{CO}_{3}^{2-}\right] /\left[\mathrm{OH}^{-}\right]+\mathrm{K}_{\mathrm{b} 1} \mathrm{~K}_{\mathrm{b} 2}\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{OH}^{-}\right]^{2}$
Sub all knowns into above
$\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]+2.13 \mathrm{e}-4\left[\mathrm{CO}_{3}{ }^{2-}\right] / 1.00 \mathrm{e}-9+2.13 \mathrm{e}-4 * 2.25 \mathrm{e}-8\left[\mathrm{CO}_{3}{ }^{2-}\right] /(1.00 \mathrm{e}-9)^{2}$
$\left[\mathrm{Mg}^{2+}\right]=2.13 \mathrm{e} 5\left[\mathrm{CO}_{3}{ }^{2-}\right]+4.79 \mathrm{e} 6\left[\mathrm{CO}_{3}{ }^{2-}\right]=5.01 \mathrm{e} 6\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{Mg}^{2+}\right] / 5.01 \mathrm{e} 6 \quad$ sub into $\mathrm{K}_{\text {sp }}$

$$
\text { mass } \mathrm{Ag}=0.849 \mathrm{~g}
$$

${ }^{49} \mathrm{AgCN}$ solubility should decrease with increasing pH.

```
AgCN = Ag+ + CN 
CN}+\mp@subsup{+}{2}{-
```

Since OH - is a product increasing its concentration should drive the reaction to AgCN using Le Chatelier's principles

$$
\begin{aligned}
& {\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=3.5 \mathrm{e}-8} \\
& {\left[\mathrm{Mg}^{2+}\right]^{2} / 5.01 \mathrm{e} 6=3.5 \mathrm{e}-8} \\
& {\left[\mathrm{Mg}^{2+}\right]=0.42 \mathrm{M}} \\
& x g \text { AgCl }+y g \text { AgBr }=2.000 g \\
& x \mathrm{~g} \mathrm{AgCl} *(\mathrm{~mol} \mathrm{AgCl} / 143.35 \mathrm{~g})^{*}(\mathrm{~mol} \mathrm{Ag} / \mathrm{mol} \mathrm{AgCl})^{*}(107.9 \mathrm{~g} / \mathrm{mol})=0.7527 \mathrm{xg} \mathrm{Ag} \\
& \text { y g AgCl }{ }^{*}(\mathrm{~mol} \mathrm{AgBr} / 187.9 \mathrm{~g})^{*}(\mathrm{~mol} \mathrm{Ag} / \mathrm{mol} \mathrm{AgBr})^{*}(107.9 \mathrm{~g} / \mathrm{mol})=0.5742 \mathrm{yg} \mathrm{Ag} \\
& 0.7527 x \text { g Ag }+0.5742 y \text { g Ag }=1.300 \mathrm{~g} \\
& y=2.000-x \text { sub into above } \\
& 0.7527 x+0.5742(2.000-x)=1.300 g \\
& { }^{48} \mathrm{Ksp}=1.8 \mathrm{e}-10=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \ldots .99 .99 \% \text { Ag+ removal } \quad 1.8 \mathrm{e}-10=(1.000-0.9999)(1.0 \mathrm{e}-3)\left[\mathrm{Cl}^{-}\right] \quad\left[\mathrm{Cl}^{-}\right]=1.8 \mathrm{e}-\mathbf{3} \mathrm{M}
\end{aligned}
$$

