2 – Equilibria Problem Set

<u>The Basics</u>

- 1] Calculate the solubility of PbCl₂ (K_{sp} = 1.7 x 10⁻⁵) in the presence of 0.122 M NaCl.¹
- 2] Calculate the K_{sp} of barium sulfate (MW 233) if its solubility is measured as 0.0023 mg/mL.²
- 3] What is the molar solubility of PbCl₂, K_{sp} = 1.7e-5? ³
- 4] What is the solubility of barium carbonate? ⁴ BaCO₃ Ksp = 5.0e-9
- 5] What is the solubility of copper (I) sulfide in 0.1 M Na₂S? 5 Cu₂S Ksp = 3e-49
- 6] What is the solubility of PbCl₂ in 0.10 M NaCl? 6
- 7] Calculate the pH of a solution of 0.025 M acetic acid and 0.025 M sodium acetate. ⁷
- 8] What the pH of $[H^+] = 3.35e-6$?⁸
- 9] Calculate the pH of a solution of 0.025 M acetic acid, K_a = 1.8 \times 10 $^{-5}$ 9
- 10] What is the pH of a solution of 0.100 M HCl? 10
- 11] What is the pH of 0.10 M benzoic acid? 11 K_a = 6.28e-5

- 12] The concentration of H^+ in a pH 6.772 solution is _____ ¹²
- 13] The pH of a solution of a 0.100 M weak acid (HA) $K_a = 2.7 \times 10^{-6}$ is _____ ¹³
- 14] What is $[H^+]$ when a solution is pH = 4.653? ¹⁴
- 15] The solubility of the salt MA₂ (K_{sp} = 8.9×10^{-17}) is _____1

 $MA(s) = M^{2+}(aq) + 2A^{-}(aq)$

- 16] What is the solubility of a salt, AB ($K_{sp} = 7.2 \times 10^{-12}$) in the presence of 0.10 M B⁻?¹⁶
- 17] The K_a of a weak acid (HA) is 7.2×10^{-6} . What is K_b for the following reaction? ¹⁷

$$A^- + H_2O = HA + OH^-$$

18] The concentration of H^+ in a pH 8.55 solution is 18

- 19] What is the pH of a 2.11 M solution of HNO_3 ? ¹⁹
- 20] What is the H⁺ concentration of a solution that has a pH of 5.32?²⁰
- 21] What is K for this reaction? ²¹

$H_2SO_3 = SO_3^{2-} + 2H^+$	K = ?
$H_2SO_3 = HSO_3^- + H^+$	K = 1.23e-2
$HSO_{3}^{-} = SO_{3}^{2-} + H^{+}$	K = 6.6e-8

Charge Balance and Mass Balance

22] Write down a valid mass balance for a solution for 0.10 M NaHCO₃. ²²

- 23] What is the charge balance for a solution of 0.1 M MgCl₂? 23
- 24] What is the charge balance for a solution of 0.10 M NaHCO₃? 24

$$K_{a1} = 6.352$$
 $K_{a2} = 10.329$

 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$

 $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$

25] What is the CBE for the follow reaction sequence? ²⁵

$$H_2S = H^+ + HS^-$$

 $HS^- = H^+ + S^{2-}$
 $H_2O = H^+ + OH^-$

26] Write a charge balance equation for a solution containing NaNO₃, KCl, and Na₂SO₄.²⁶

27] What is the mass balance equation for the following sequence of reactions? ²⁷

$$CaC_2O_4(s) \rightleftharpoons Ca^{2+} + C_2O_4^{2-}$$

K_{sp} = 1.3e-8

 $C_2O_4{}^2\text{-}+H_2O\rightleftarrows HC_2O_4{}^\text{-}+OH^\text{-}\ K_{b1}$

 $HC_2O_4^- + H_2O \rightleftharpoons H_2C_2O_4 + OH^-K_{b2}$

28] What is the charge balance equation for the reaction sequence: ²⁸

$$CaC_2O_4(s) \rightleftharpoons Ca^{2+} + C_2O_4^{2-}$$
 $K_{sp} = 1.3e-8$
 $C_2O_4^{2-} + H_2O \rightleftharpoons HC_2O_4^{-} + OH^ K_{b1}$

 $HC_2O_4^- + H_2O \rightleftharpoons H_2C_2O_4 + OH^-K_{b2}$

29] What is the CBE for the follow reaction sequence? ²⁹

$$H_2S = H^+ + HS^-$$

 $HS^- = H^+ + S^{2-}$
 $H_2O = H^+ + OH^-$

30] What is the MBE for 1.00e-3 M $[Ag(NH_3)_2]Cl$ for the following reaction sequence: ³⁰

$$[Ag(NH_3)_2]CI \rightarrow Ag(NH_3)_2^+ + CI$$
$$Ag(NH_3)_2^+ = Ag(NH_3)^+ + NH_3$$
$$Ag(NH_3)^+ = Ag^+ + NH_3$$

31] What is the MBE for the following sequence of reactions? 31

$$MgF_2 = Mg^{2+} + 2F^{-}$$
 K_{sp}
 $F^{-} + H_2O = HF + OH^{-}$ K_b

 $Mg^{2+} + H_2O = Mg(OH)^+ + H^+ - \beta$

32] What is the charge balance for a solution of 0.10 M NaHCO₃? 32

$$pK_{a1} H_2CO_3 = 6.352$$
 $pK_{a2} HCO_3^- = 10.329$
 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$
 $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$

33] Write a charge balance equation of for a solution of 0.10 M phthalic acid. ³³

K_{a1} = 1.12e-3 K_{a2} = 3.90e-6

34] What is the charge balance equation for a solution that is saturated with SrF₂? ³⁴

 K_{sp} (SrF₂) = 2.9×10⁻⁹ K_a (HF) = 6.8×10⁻⁴

35] What is the mass balance equation for a solution that is initially 0.1 M NaF? K_a (HF) = 6.8e-4 ³⁵

Solubility

36] What is the solubility of SrF₂ (K_{sp} = 2.8e-9) at pH 4.00? HF K_a = 6.76e-4. ³⁶

37] What best explains the solubility of Ag₂SO₄? ³⁷

38] What is the molar solubility of BaF₂ (K_{sp} = 1.7e-6) at pH 7.20? K_a (HF) = 6.8e-4 38

39] What is the solubility of Hg₂Cl₂ ($K_{sp} = 1.2 \times 10^{-18}$) in 0.20 M NaCl? ³⁹

40] The K_{sp} of PbI₂ is 7.9e-9. What is the concentration of I⁻ required to precipitate 99.99% of 1.6e-4 M Pb²⁺(aq)? ⁴⁰

41] Consider a saturated solution of $R_3NH^+Br^-$, where R is an organic group. Find the solubility of $R_3NH^+Br^-$ in a solution maintained at pH 9.50. ⁴¹

$R_3NH^+Br^-(s) \rightleftharpoons R_3NH^+ + Br^-$	K _{sp} = 4.0×10 ⁻⁸
$R_3NH^+ ightarrow R_3N + H^+$	K _a = 2.3×10 ⁻⁹

42] What is the aqueous solubility of AgCl at pH 4.00 (K_{sp} = 1.8e-11)?⁴²

43] A mixture of AgCl (MW 143.35, K_{sp} =1.8e-10) and AgBr (MW 187.9, K_{sp} =5.0e-13) weighs 2.000 g. This mixture is reduced to silver metal (AW 107.9), which weighs 1.300 g. Calculate the mass of AgCl in the original sample. ⁴³

44] A 0.2795 g sample of the insecticide containing lindane ($C_6H_6Cl_6$, MW 290.8) and DDT ($C_{14}H_9Cl_5$, MW 354.5) was burned in purified air. The products of this reaction, CO_2 , H_2O , and HCl were passed through a solution of NaHCO₃ that captured HCl. Chloride was precipitated as AgCl with a solution of excess AgNO₃(aq). The AgCl was dried and weighed, 0.7161 g. Calculate the percent lindane and DDT in the sample. ⁴⁴

45] Calculate the concentration of Ba^{2+} in solution when 15.00-mL of 0.200 M K₂CrO₄(aq) is added to 25.00-mL of 0.100 M BaCl₂(aq). ⁴⁵

46] What is the solubility of CaF₂ in 0.100 M HCl. What are the equilibrium concentrations HF and F⁻ under these conditions? 46

47] What is the solubility of MgCO₃ at pH 5.00? 47

48] The K_{sp} of AgCl is 1.8e-10. What is the concentration of Cl⁻ required to remove 99.99% of 1.0e-3 M Ag⁺? ⁴⁸

49] The K_{sp} of AgCN(s) is 2.2e-16. The K_a of HCN is 6.2e-10. What would you expect with AgCN molar solubility and pH?⁴⁹

Answers

¹ x(0.122+2x)²=1.7e-5; x=1.7e-5/(0.122+2x)²; let 2x=0; x_1 =1.14e-3 then x_2 =1.10e-3 and x_3 =1.10e-3

² 9.7 x 10⁻¹¹

 3 K_{sp} = [Pb²⁺][Cl⁻]² $(2x)^2x = 1.7e-5$ x = 1.6e-2 M 4 Ba²⁺ CO32-BaCO₃ + 0 0 --+χ +χ х х $x^2 = 5.0e-9$ x = **7.1e-5** M 5 S²⁻ 2Cu⁺ Cu₂S = + 0 0.1 M +2x +χ 0.1 + x 2x $(2x)^2(0.1+x) \cong 4x^2(0.1) = 3e-49$ x = 9e-25

⁶ $(0.10 + 2x)^2 x = 1.7e-5; (0.10)^2 x \approx 1.7e-5; x = 1.7e-3 M$

74.74

⁸ pH = -log(3.35e-6) = **5.475**

⁹ 3.17

be careful of s.f. ¹⁰ 1.000

11 HA H+ A-= + 0.10 M 0 0 +x +χ -X 0.10 – x х х $x^{2}/(0.10 - x) \cong x^{2}/0.10 = 6.28e-5$ $x = [H^{+}] = 2.5e-3$ pH = 2.60 12 1.69 \times 10⁻⁷ M ¹³ HA = H⁺ + A⁻ 0.100-x +χ +χ x²/0.100-x = 2.7e-6 x = 5.2e-4 M pH = 3.28 ¹⁴ pH = 4.653 [H⁺] = 10^{-4.653} = **2.22e-5 M** ¹⁵ MA₂ = M²⁺ + 2A⁻ +2x --+x $(2x)^2x = 8.9e-17$ x = 2.8e-6 M ¹⁶ AB = A^+ + B⁻ Х 0.10+x - $x(0.10+x) \approx 0.10x = 7.2e-12$ x = 7.2e-11 M 17 K_aK_b = K_w K_b = 1.00e-14/7.2e-6 = 1.4e-9 ¹⁸ 2.8e-9 M watch S.F. ¹⁹ -0.324 watch S.F. ²⁰ 4.8×10⁶ M watch S.F.

²¹ 8.1e-10 ²² 0.10 M = $[H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$ ²³ 2[Mg²⁺] = [Cl⁻] 24 [Na⁺] + [H⁺] = [HCO₃⁻] + 2[CO₃²⁻] + [OH⁻] 25 [H⁺] = [OH⁻] + [HS⁻] + 2[S²⁻] 26 [Na⁺] + [K⁺] = [NO₃⁻] + [Cl⁻] + 2[SO₄²⁻] 27 [Ca²⁺] = [C₂O₄²⁻] + [HC₂O₄⁻] + [H₂C₂O₄] ${}^{28} 2[Ca^{2+}] = 2[C_2O_4^{2-}] + [HC_2O_4^{-}] + [OH^{-}]$ $^{29}[H^+] = [OH^-] + [HS^-] + 2[S^{2-}]$ ³⁰ 1.00e-3 $M = [Ag(NH_3)_2^+] + [Ag(NH_3)^+] + [Ag^+]$ $^{31} 2[Mg^{2+}] + 2[Mg(OH)^+] = [F^-] + [HF]$ $^{32}[Na^+] + [H^+] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$ 33 [H⁺] = 2[A²⁻] + [HA⁻] 34 SrF₂(s) = Sr²⁺ + 2F⁻ $F^{-} + H_2O = HF + OH^{-}$ $H_2O = H^+ + OH^-$ CBE: $2[Sr^{2+}] + [H^+] = [F^-] + [OH^-]$ ³⁵ Rxn Seq: NaF \rightarrow Na⁺ + F⁻ $F^{-} + H_2O \rightarrow HF + OH^{-}$ MBE: 0.1 M = $[Na^+] = [F^-] + [HF]$

 $K_b = [HF][OH^-]/[F^-] \rightarrow [HF] = 0.1479 [F^-]$ $2[Sr^{2+}] = [F^-] + [HF] = 1.1479 [F^-]#1$ $K_{sp} = [Sr^{2+}][F^{-}]^2 \rightarrow [F^{-}] = (Ksp/[Sr^{2+}])^{1/2}#2$ Sub 2 into 1 $2[Sr^{2+}] = 1.1479(Ksp/[Sr^{2+}])^{1/2}[Sr^{2+}]^3 = 9.52e-10$ [Sr^{2+}] = s = 9.8e-4 M 37 [Ag⁺]/2 or [SO₄²⁻] ³⁸ <u>MBE: $2[Ba^{2+}] = [F^-] + [HF]</u> & {[H^+]} = 6.3<u>1</u>e-8 M; [OH^-] = 1.5<u>8</u>e-7</u>$ $K_{sp} = [Ba^{2+}][F^{-}]^2 = 1.7e-6$ $K_a(HF) = [H^+][F^-]/[HF] = 6.8e-4$ 3 variables: [Ba²⁺], [F⁻], [HF] $F^{-} + H_2O \rightleftharpoons HF + OH^{-}$ $K_b = K_w/K_a = 1.00e-14/6.8e-4 = 1.47e-11$ Using K_b solve for [HF] $[HF] = K_b[F^-]/[OH^-]$ will sub into MBE $2[Ba^{2+}] = [F^{-}] + [HF]$

Sub all knowns into above

 $2[Ba^{2+}] = [F^-] + K_b[F^-]/[OH^-]$

2 [Ba²⁺] = [F⁻] + 1.4<u>7</u>e-11*[F⁻]/1.5<u>8</u>e-7

 $2 \; [Ba^{2+}] \cong [F^{\text{-}}] \qquad \qquad \text{sub into } K_{\text{sp}}$

	Ksp = [Ba ²⁺][F ⁻	$]^{2} = [Ba^{2+}](2[Ba^{2+}])^{2}$	2			
$[Ba^{2+}] = (Ksp/4)^{1/3} = 7.5e-3M$						
³⁹ Hg ₂ Cl ₂ =	Hg_2^{2+}	+2Cl ⁻				
	0	0.20				
	<u>+x</u>	+2x				
	x	0.20+2x				
1.2×10 ⁻¹⁸ = x(0).20+2x) ²					
1.2×10 ⁻¹⁸ ≈ x(0.20) ²						
x = 3.0e-17						
⁴⁰ 7.9e-9 = $(1-0.9999)[1.6e-4][I^2]^2$ [I ⁻] = 0.70 M						
⁴¹ MBE:	[Br⁻] = [R ₃ NH⁺]	+ [R ₃ N]#1				
	$K_a = [H^+][R_3N]/[R_3NH^+]$		#2			
	$K_{sp} = [R_3 N H^+][$	Br⁻]	#3			
	3 variables, 3 eqn					
	$[H+] = 10^{-9.50} = 3.2e-10$					
If solve for [Br ⁻] we find the solubility of $R_3NH^+Br^-$						
Sub into MBE narrow it down to 2 variables						
$[R_3N] = [R_3NH^+]$						
	$K_a/[H^+] = 7.19 [R_3 NH^+]$					
	$[Br^{-}] = [R_3NH^+] + [R_3N]$					
	[Br ⁻] = [R ₃ NH ⁺] + 7.19 [R ₃ NH ⁺]					
	= 8.19 [R ₃ NH ⁺]	l				
	[R ₃ NH ⁺] = [Br ⁻]	/ 8.19				
	Sub into Ksp					

 $K_{sp} = [R_{3}NH^{+}][Br] = 4.0 \times 10^{-8}$ $= [Br]^{2} / 8.19$ [Br] = 5.7e-4 $^{42} AgCl \rightleftharpoons Ag^{+} + Cl^{-}$ -- x x x $K_{sp} = x^{2} = 1.8e-11 x = 4.2e-6$ $^{43} x g AgCl + y g AgBr = 2.000 g$ $x g AgCl^{*}(mol AgCl/143.35 g)^{*}(mol Ag/mol AgCl)^{*}(107.9 g/mol) = 0.7527x g Ag$ $y g AgCl^{*}(mol AgBr/187.9 g)^{*}(mol Ag/mol AgBr)^{*}(107.9 g/mol) = 0.5742y g Ag$ 0.7527x g Ag + 0.5742y g Ag = 1.300 g y = 2.000 - x sub into above 0.7527x + 0.5742(2.000 - x) = 1.300 g

mass Ag = 0.849 g

⁴⁴ 2 equations:

Mass lindane + Mass DDT = 0.2795 g#1Mass AgCl from lindane + Mass AgCl from DDT = 0.7161 g#2Let x = mass lindane and y = mass DDTx + y = 0.2795#3mass AgCl from lindane = $x \times \frac{mol \ lindane}{290.8g} \times \frac{6mol \ AgCl}{mol \ lindane} \times \frac{143.35g}{mol \ AgCl} = 2.958x$ mass AgCl from DDT = $y \times \frac{mol \ DDT}{354.5g} \times \frac{5mol \ AgCl}{mol \ DDT} \times \frac{143.35g}{mol \ AgCl} = 2.022y$ Sub into #3 we have2.958x + 2.022y = 0.7161Solve for x in #3x = 0.2795 - y and sub into #4

2.958(0.2795 - y) + 2.022y = 0.7161

y = 0.1183 g DDT

x = 0.1612 g lidane

% lindane = 0.1612/0.2795 * 100 = 57.68%

% DDT = 100 - 57.68 = 42.31 %

⁴⁵ Rxn: $K_2CrO_4(aq) + BaCl_2(aq) \rightleftharpoons BaCrO_4(s) + 2KCl(aq)$

Must find limiting reagent.

25.00-mL * 0.100 M $BaCl_2 = 2.50 \text{ mmol } Ba^{2+}$

15.00-mL of 0.200 M K₂CrO₄ = 3.00 mmol CrO₄²⁻

2.00 mmol Ba²⁺ must limiting reagent. Left over CrO₄²⁻:

 $3.00 - 2.50 \text{ mmol} = 0.50 \text{ mmol} \text{ CrO}_4^{2-}$

 $[CrO_4^{2-}] = 0.50 \text{ mmol}/40.0 \text{-mL} = 1.25 \text{e-2 M}$

Solubility Reaction:

BaCrO₄(s) \rightleftharpoons Ba²⁺ + CrO₄²⁻ -- 0 1.2<u>5</u>e-2 -- +x +x

 $K_{sp} = 2.1e-10$

 $2.1e-10 = x (1.25e-2 - x) \cong x (1.25e-2)$

&

x = 1.7e-8 M

⁴⁶ Rxns: CaF₂ \rightleftharpoons Ca²⁺ + 2F⁻ F^- + H₂O \rightleftharpoons HF + OH⁻ H₂O \rightleftharpoons H⁺ + OH⁻ MBE: 2[Ca²⁺] = [F⁻] + [HF]

$$[H^+] = 0.100 \text{ M}; [OH^-] = 1.00e-13$$

$$K_{sp} = [Ca^{2+}][F^-]^2 = 3.9e-11 \qquad K_a$$

$$(HF) = [H^+][F^-]/[HF] = 6.8e-4$$

$$F^- + H_2O \rightleftharpoons HF + OH^-$$

$$K_b = K_w/K_a$$

$$= 1.00e-14/6.8e-4 = 1.4\underline{7}e-11$$

$$Using K_b solve for [HF]$$

$$[HF] = K_b[F^-]/[OH^-] \qquad will sub into MBE$$

$$2[Ca^{2+}] = [F^-] + [HF]$$

$$2[Ca^{2+}] = [F^-] + K_b[F^-]/[OH^-]$$
Sub all knowns into above
$$2 [Ca^{2+}] = [F^-] + 1.4\underline{7}e-11^*[F^-]/1.00e-13$$

2 [Ca²⁺] = [F⁻] + 147[F⁻] = 148 [F⁻] [Ca²⁺][F⁻]² = 3.9e-11 74 [F⁻]³ = 3.9e-11

From K_a

 $[HF] = [H^+][F^-]/6.8e-4$

= 1.00e-1*8.08e-5/6.8e-4

[HF]= 1.2e-2

From MBE $[Ca^{2+}] = \frac{1}{2} [F^{-}] + \frac{1}{2} [HF]$

= ½ * 8.1e-5 + ½ * 1.2e-2 = 6.0e-3

From K_{sp}

 $[Ca^{2+}] = 3.9e - 11/[F^{-}]^2 = 3.9e - 11/8.08e - 5^2 = 6.0e - 3$

⁴⁷ MBE: [Mg²⁺] = [CO₃²⁻] + [HCO₃⁻] + [H₂CO₃]

 $[OH^{-}] = 1.00e-9$ $K_{sp} = [Mg^{2+}][CO_{3}^{2-}] = 3.5e-8$ $CO_{3}^{2-} + H_{2}O = HCO_{3}^{-} + OH^{-}$ $K_{b1} = K_{w}/K_{a2} = 1.00e-14/4.69e-11 =$ $2.13e-4 = [HCO_{3}^{-}][OH^{-}]/[CO_{3}^{2-}]$ $HCO_{3}^{-} + H_{2}O = H_{2}CO_{3} + OH^{-}$ $K_{b2} = K_{w}/K_{a1} = 1.00e-14/4.45e-7 =$ $2.25e-8 = [H_{2}CO_{3}][OH^{-}]/[HCO_{3}^{-}]$ $Using K_{b1} solve for [HCO_{3}^{-}]$ $[HCO_{3}^{-}] = K_{b1}[CO_{3}^{2-}]/[OH^{-}]$

will sub into MBE

Using K_{b2} solve for [H₂CO₃]

 $[H_2CO_3] = K_{b2} [HCO_3^-]/[OH^-]$

 $= K_{b1}K_{b2}[CO_3^{2-}]/[OH^{-}]^2$

Sub both of above into MBE

 $[Mg^{2+}] = [CO_3^{2-}] + [HCO_3^{-}] + [H_2CO_3]$

 $[Mg^{2+}] = [CO_3^{2-}] + K_{b1}[CO_3^{2-}]/[OH^-] + K_{b1}K_{b2}[CO_3^{2-}]/[OH^-]^2$ Sub all knowns into above $[Mg^{2+}] = [CO_3^{2-}] + 2.13e - 4[CO_3^{2-}]/1.00e - 9 + 2.13e - 4*2.25e - 8[CO_3^{2-}]/(1.00e - 9)^2$ $[Mg^{2+}] = 2.13e5[CO_3^{2-}] + 4.79e6[CO_3^{2-}] = 5.01e6[CO_3^{2-}]$ $[CO_3^{2-}] = [Mg^{2+}]/5.01e6 \qquad \text{sub into } K_{sp}$ $[Mg^{2+}][CO_{3}^{2-}] = 3.5e-8$ $[Mg^{2+}]^{2}/5.01e6 = 3.5e-8$ $[Mg^{2+}] = 0.42 M$ x g AgCl + y g AgBr = 2.000 g x g AgCl*(mol AgCl/143.35 g)*(mol Ag/mol AgCl)*(107.9 g/mol) = 0.7527x g Ag y g AgCl*(mol AgBr/187.9 g)*(mol Ag/mol AgBr)*(107.9 g/mol) = 0.5742y g Ag 0.7527x g Ag + 0.5742y g Ag = 1.300 g y = 2.000 - x sub into above 0.7527x + 0.5742(2.000 - x) = 1.300 g g = 0.849 g

mass Ag = 0.849 g ⁴⁸ Ksp = 1.8e-10 = $[Ag^+][Cl^-]$ 99.99% Ag+ removal 1.8e-10 = $(1.000-0.9999)(1.0e-3)[Cl^-]$ [Cl⁻] = 1.8e-3 M

⁴⁹ AgCN solubility should decrease with increasing pH.

 $AgCN = Ag^{+} + CN^{-}$ $K_{sp} AgCN(s) = 2.2e-16 = [Ag^{+}][CN^{-}]$ $CN^{-} + H_{2}O = HCN + OH^{-}$

Since OH- is a product increasing its concentration should drive the reaction to AgCN using Le Chatelier's principles