Problem Set 2a Precipitation Titrations and Gravimetric Analysis

1] What is pAg when 25.00-mL of 1.00e-2 M AgNO₃ is added to 25.00-mL of 1.00e-2M NaCl? K_{sp} (AgCl) = 1.8e-10 ¹

2] A solution of 0.100 M XNO3 is used to titrate a 100.00 mL solution of 0.100 M KCl. The K_{sp} of XCl is 1.8e-11

- a) What is pX if 50.00 mL of the titrant is added to the KCl solution?
- b) What is pX if 100.00 mL of the titrant is added?
- c) What is pX if 150.00 mL of the titrant is added? $^{\rm 2}$

3] A 0.9961 g silver ore sample was treated with HNO₃ and then with excess NaCl(aq). A precipitate was dried and weighed 0.0711 g. What is percent silver in the ore? AW: Ag 107.9, H 1.008, O 16.00, N 14.01, Cl 35.45 3

4] Which diagram best describes the curve for the titration of 50.0-mL of 0.100 M KSCN with 0.0500 M CuNO₃? The K_{sp} of CuSCN is 4.8e-15 4

5] A mixture of AgCl (MW 143.35, K_{sp} =1.8e-10) and AgBr (MW 187.9, K_{sp} =5.0e-13) weighs 2.000 g. This mixture is reduced to silver metal (AW 107.9), which weighs 1.300 g. Calculate the mass of AgCl in the original sample. ⁵

6] What is the concentration Cl⁻ required to remove 99% of Ag⁺ in a solution of 0.100 F AgNO₃? 6

Answers

¹ Rxn: $Ag^+ + Cl^- = AgCl(s)$ So $AgCl(s) = Ag^+ + Cl_+ + x$ Ksp = $x^2 = 1.8e-10$ X = 1.3e-5 M pAg = 4.89

² Titration Rxn: $X^+ + Cl^- \rightleftharpoons XCl(s)$

a) Moles of excess Cl⁻ = 0.10000 L * 0.100 M KCl – 0.05000 L * 0.100 M XNO₃ = 5.00e-3 mol Cl⁻

 $[Cl^{-}] = 5.00e-3 \text{ mol } Cl^{-} / 0.1500 \text{ L} = 3.33e-2$

XCl(s) \rightleftharpoons X⁺ + Cl⁻ -- x x+3.33e-2 x(3.33e-2) ≅ 1.8e-11 x = 5.4e-10 M pX = 9.27

b) This is the equivalence point.

XCI(s) \rightleftharpoons X⁺ + Cl⁻ -- x x x x² = 1.8e-11 x = 4.2<u>4</u>e-6 pX = 5.37

c) We are past the equivalence point.

(150.00 - 100.00) mL * 0.100 M Ag⁺ (250.00 mL) = 0.0200 M X⁺ or pX = 1.699

³ 0.0711 g AgCl (mol AgCl / 143.32 g) (mol Ag / mol AgCl) (107.868 g / mol Ag) (100 / 0.9961g) = 5.37 %

 4 IV

 5 x g AgCl + y g AgBr = 2.000 g

x g AgCl*(mol AgCl/143.35 g)*(mol Ag/mol AgCl)*(107.9 g/mol) = 0.7527x g Ag

y g AgCl*(mol AgBr/187.9 g)*(mol Ag/mol AgBr)*(107.9 g/mol) = 0.5742y g Ag

0.7527x g Ag + 0.5742y g Ag = 1.300 g

y = 2.000 - x sub into above

0.7527x + 0.5742(2.000 - x) = 1.300 g

mass Ag = 0.849 g

⁶ [Ag⁺] = (1-0.99) 0.100 F = 1.00e-3 M K_{sp} = [Ag⁺][Cl⁻] = 1.8e-10 = 1.00e-3 M*[Cl⁻] → [Cl⁻] = 1.80e-7 M