3 – Acid/Base Equilibria – modified September 25, 2014

1] What is the pH of a solution containing 0.25 M sodium acetate, and 0.25 M CH<sub>3</sub>COOH?  $K_a = 1.75e-5^{-1}$ 

2] Which of the following monoprotic acids would be best for creating a buffer system at pH 7.00?  $^{2}$ 

| acid A Ka = 5.6e-4 | acid B Ka = 7.7e-6  |
|--------------------|---------------------|
| acid C Ka = 1.9e-8 | acid D Ka = 7.3e-11 |

3] The weak acid, HA has K<sub>a</sub> = 1.0e-5. What is the fraction,  $\alpha_{A-}$  at pH 7.00? <sup>3</sup>

4] What is the pH of a solution that is 0.10 M sodium acetate with 0.10 M acetic acid?  $K_a = 1.75e-5^{-4}$ 

4] What is the pH of a solution of 0.100 M Na<sub>2</sub>HA solution given the following:  $^{5}$ 

| $H_3A = H_2A^- + H^+$    | K <sub>a</sub> = 2.8e-2  |
|--------------------------|--------------------------|
| $H_2A^- = HA^{2-} + H^+$ | K <sub>a</sub> = 7.7e-5  |
| $HA^{2-} = A^{3-} + H^+$ | K <sub>a</sub> = 9.3e-11 |

6] What is the pH of a solution of a 1.0 M phthalic acid solution? <sup>6</sup>



 $K_{a2} = 3.90e-6$ 

7] What is the mole fraction of HA $^{-}$  at pH 3.00 given  $^{7}$ 

$$H_2A = H^+ + HA^- K_{a1} = 1.0e-3$$
  
 $HA^- = H^+ + A^{2-} K_{a2} = 1.0e-9$ 

8] The mole fraction of  $H_2A$  can be calculated from which of the following expressions? <sup>8</sup>

$$H_2A = H^+ + HA^ K_{a1} = 3.3e-5$$

9] What is the pH of a solution of 0.10 M NaHCO<sub>3</sub>? 9

| $H_2CO_3 = HCO_3^- + H^+$   | K <sub>a1</sub> = 4.45e-7  |
|-----------------------------|----------------------------|
| $HCO_3^- = CO_3^{2-} + H^+$ | K <sub>a2</sub> = 4.69e-11 |

10] What is or are the simplifying assumption(s) that allow for the use of the Henderson-Hasselbalch equation? <sup>10</sup>

11] What is the pH of a solution consisting of 0.100 M CH<sub>3</sub>COONa and 0.100 M CH<sub>3</sub>COOH?  $^{11}$ 

12] An experimental protocol requires a buffer at a pH of 6.50. What is the molar ratio of [NaA]/[HA] required given: <sup>12</sup>

 $HA = H^+ + A^ K_a = 5.62e-7$ 

13] Write down the hydrolysis reaction for  $HCO_3^-$  demonstrating that it is a weak base. <sup>13</sup>

14] The  $K_b$  for dichloroacetate,  $Cl_2CHCOO^-$  is \_\_\_\_\_14

$$Cl_2CHCOOH$$
  $K_a = 5.0e-2$ 

15] The pH of solution of 0.050 M of a weak acid, HA is 5.69. What is  $K_a$  for this acid? <sup>15</sup>

16] The two K<sub>a</sub>'s for salicylic acid (H<sub>2</sub>A) are 1.07e-3 and 1.82e-14. What is K<sub>b</sub> for sodium salicylate (NaHA)?  $^{16}$ 

17] What is  $K_b$  for this reaction given the following  $K_a$ 's? <sup>17</sup>

| $HA^{-} + H_2O = H_2A + OH^{-}$ | K <sub>b</sub> = ?        |
|---------------------------------|---------------------------|
| $H_2A = HA^- + H^+$             | K <sub>a1</sub> = 3.3e-5  |
| $HA^{-} = H^{+} + A^{2-}$       | K <sub>a2</sub> = 4.2e-10 |

18] What is pH of solution containing 0.100 M HOCl (K<sub>a</sub> = 3.0e-8) and 0.100 M NaOCl? <sup>18</sup>

19] What is the pH of solution that is 0.10 M NaH<sub>2</sub>PO<sub>3</sub>?<sup>19</sup>

$$\begin{array}{ll} H_{3}PO_{3}\rightleftarrows H_{2}PO_{3}^{-} + H^{+} & K_{a} = 3e-2 \\ H_{2}PO_{3}^{-}\rightleftarrows HPO_{3}^{2-} + H^{+} & K_{a} = 1.62e-7 \end{array}$$

20] Write the formula that describes the relative concentration of  $H_2PO_3^-$  from a 0.10 F  $H_3PO_3$  at pH 5.00 can be calculated from which formula? <sup>20</sup>

21] What is the pH of NaHA given the following?  $^{21}$ 

| $H_2A = HA^- + H^+$       | K <sub>a1</sub> = 3.3e-5  |
|---------------------------|---------------------------|
| $HA^{-} = H^{+} + A^{2-}$ | K <sub>a2</sub> = 4.2e-10 |

22] What is the pH of 0.10 M  $H_2A$  given the following? <sup>22</sup>

| $H_2A = HA^- + H^+$       | $K_{a1} = 3.3e-5$         |
|---------------------------|---------------------------|
| $HA^{-} = H^{+} + A^{2-}$ | K <sub>a2</sub> = 4.2e-10 |

23] How many grams of ammonium chloride (NH<sub>4</sub>Cl) and what volume (in mL) of 3.0 M NaOH solution should be added together to prepare a buffer of pH 9.50 with a final NH<sub>4</sub>Cl salt concentration of 0.10 M and a final volume of 500-mL? <sup>23</sup>

24] How many mL of 0.500 M NaOH should be added to 10.0 g of HA (157.597 g/mol) to give a pH 7.60 in a final volume of 250 mL?  $K_a = 8.41e-9^{24}$ 

Answers

<sup>1</sup> pH = pKa + log [base]/[acid] = 4.757

<sup>2</sup> acid C

<sup>3</sup> 0.99

<sup>4</sup> 1.75e-5 = [H<sup>+</sup>] 0.10 / 0.10 [H<sup>+</sup>] = 1.75e-5 pH = 4.757

<sup>5</sup> pH = ½(-log7.7e-5 + -log9.3e-11) = 7.07

<sup>6</sup> 1.48 only K<sub>a1</sub> is important.  $x^2/(1.0-x) = 1.12e-3$ ; x = 0.0335

<sup>7</sup> 0.50, D =  $[1.0e-3]^2$  +  $[1.0e-3]^2$  + [1.0e-3\*1.0e-9] = 2.0e-6, N =  $[1.0e-3]^2$  = 1.0e-6,  $\alpha$  = 0.50

<sup>8</sup>  $\alpha_{H2A} = [H^+]^2 / [H^+]^2 + K_{a1}[H^+] + K_{a1}K_{a2}$ 

<sup>9</sup> 8.34 = ½ (pK<sub>a1</sub> + pK<sub>a2</sub>)

<sup>10</sup> formal concentrations of A<sup>-</sup> & HA are the same as equilibrium concentrations

<sup>11</sup> 4.757 pH =  $pK_a$  watch S.F. <sup>12</sup>  $K_a = [H^+][A^-] / [HA] [H^+] = 10^{-6.50} = 3.16e^{-7} M$ 5.62e-7 / 3.16e-7 = [A<sup>-</sup>] / [HA] = KHP <sup>13</sup>  $HCO_3^-$  +  $H_2O \rightarrow H_2CO_3 + OH^-$ <sup>14</sup>  $K_{\rm b} = K_{\rm w}/K_{\rm a} = 2.0e-13$ <sup>15</sup> [H<sup>+</sup>] = 2.0e-6 M = H<sup>+</sup> + HA Α 0.050-x х х  $K_a = x^2 / (0.050 - x) \cong 2.0e - 6^2 / 0.050 = 8.3e - 11$  $^{16}$  HA<sup>-</sup> + H<sub>2</sub>O  $\rightleftharpoons$  H<sub>2</sub>A + OH<sup>-</sup>  $K_aK_b = K_w$  $K_{b} = K_{w}/K_{a} = 1.00e-14 / 1.07e-3 = 9.35e-12$ <sup>17</sup> K<sub>b</sub> = 1.00e-14 / 3.3e-5 = 3.0e-10 <sup>18</sup> K<sub>a</sub> =  $[H^+][OCI^-] / [HOCI]$   $[H^+] = K_a [HOCI] / [OCI^-]$   $[H^+] = 3.0e-8$  pH = 7.52 <sup>19</sup> pH =  $\frac{1}{2}$  (pK<sub>a1</sub> + pK<sub>a2</sub>) =  $\frac{1}{2}$  (1.5 + 6.790) = 4.1 <sup>20</sup>  $\frac{K_{a1}[H^+]}{[H^+]^2 + K_{a1}[H^+] + K_{a1}K_{a2}}$ <sup>21</sup> pH = ½(pKa1 + pKa2) pKa1 = -log(3.3e-5) = 4.48 pKa2 = -log(4.2e-10) = 9.38

pH = 6.93

 $^{22}$  only  $K_{a1}$  will be important as  $K_{a1} >> K_{a2},$  so

<sup>23</sup> [H<sup>+</sup>] = 3.2e-10 M

 $NH_4^+ = NH_3 + H^+$   $K_a = 5.70e-10$ 

 $K_a = [H^+][NH_3]/[NH_4^+]$ 

```
First calculate the ratio [NH<sub>3</sub>]/[NH<sub>4</sub><sup>+</sup>]
```

 $[NH_3]/[NH_4^+] = K_a/[H^+] = 5.70e-10 / 3.2e-10 M = 1.8$ 

If  $[NH_4CI] = 0.10 \text{ M}$ , then  $[NH_3] = 0.18 \text{ M}$ 

MBE: Initial  $[NH_4CI] = [NH_4CI] + [NH_3] = 0.10 + 0.18 = 0.28 M$ 

Mass Initial [NH<sub>4</sub>Cl] = 0.28 M \* 0.500 L \* (53.5 g) = 7.49 g NH<sub>4</sub>Cl

For the reaction:  $NH_4CI + NaOH = NH_3 + NaCI + H_2O$ 

Add vol NaOH = 0.18 M \* 0.500 L \* 1/3.0 M \* 1000 mL/L = 30 mL NaOH

<sup>24</sup> Mol HA = 10.0 g \* (mol / 157.597 g) = 6.35e-2

```
Rxn: HA+ OH<sup>-=</sup> A<sup>-</sup>+ H<sub>2</sub>O

Mol: 6.35e-2 \times 0

-x -x +x

[HA] = (6.35e-2 - x) &

[OH<sup>-</sup>] = [A<sup>-</sup>] = x

[H<sup>+</sup>] = 2.51e-8 M

K<sub>a</sub> = [H<sup>+</sup>][A<sup>-</sup>] / [HA]

8.41e-9 = 2.51e-8 \times / (6.35e-2 - x)

x = 1.59e-2 \mod
```

1.59e-2 mol \* (L / 0.500 mol) = 31.9 mL