3 - Acid/Base Equilibria - modified September 25, 2014
1] What is the pH of a solution containing 0.25 M sodium acetate, and $0.25 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$? $\mathrm{K}_{\mathrm{a}}=$ $1.75 \mathrm{e}-5^{1}$

2] Which of the following monoprotic acids would be best for creating a buffer system at pH 7.00 ? ${ }^{2}$

$$
\begin{array}{ll}
\text { acid } \mathrm{A} K=5.6 \mathrm{e}-4 & \text { acid } \mathrm{B} K a=7.7 \mathrm{e}-6 \\
\text { acid } C \text { Ka }=1.9 \mathrm{e}-8 & \text { acid } D K a=7.3 \mathrm{e}-11
\end{array}
$$

3] The weak acid, HA has $K_{a}=1.0 \mathrm{e}-5$. What is the fraction, α_{A-} at pH 7.00 ? ${ }^{3}$
4] What is the pH of a solution that is 0.10 M sodium acetate with 0.10 M acetic acid? $\mathrm{K}_{\mathrm{a}}=$ $1.75 \mathrm{e}-5{ }^{4}$

4] What is the pH of a solution of 0.100 M Na 2 HA solution given the following: ${ }^{5}$

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{~A}=\mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}=2.8 \mathrm{e}-2 \\
\mathrm{H}_{2} \mathrm{~A}^{-}=\mathrm{HA}^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}=7.7 \mathrm{e}-5 \\
\mathrm{HA}^{2-}=\mathrm{A}^{3-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}=9.3 \mathrm{e}-11
\end{array}
$$

6] What is the pH of a solution of a 1.0 M phthalic acid solution? ${ }^{6}$

$\mathrm{K}_{\mathrm{a} 1}=1.12 \mathrm{e}-3$
$\mathrm{K}_{\mathrm{a} 2}=3.90 \mathrm{e}-6$

7] What is the mole fraction of HA^{-}at pH 3.00 given ${ }^{7}$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~A}=\mathrm{H}^{+}+\mathrm{HA}^{-} \mathrm{K}_{\mathrm{a} 1}=1.0 \mathrm{e}-3 \\
& \mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} \quad \mathrm{K}_{\mathrm{a} 2}=1.0 \mathrm{e}-9
\end{aligned}
$$

8] The mole fraction of $\mathrm{H}_{2} \mathrm{~A}$ can be calculated from which of the following expressions? ${ }^{8}$

$$
\mathrm{H}_{2} \mathrm{~A}=\mathrm{H}^{+}+\mathrm{HA}^{-} \quad \mathrm{K}_{\mathrm{a} 1}=3.3 \mathrm{e}-5
$$

$$
\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} \quad \mathrm{K}_{\mathrm{a} 2}=4.2 \mathrm{e}-10
$$

9] What is the pH of a solution of $0.10 \mathrm{M} \mathrm{NaHCO}_{3}$? ${ }^{9}$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{CO}_{3}=\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=4.45 \mathrm{e}-7 \\
\mathrm{HCO}_{3}^{-}=\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 2}=4.69 \mathrm{e}-11
\end{array}
$$

10] What is or are the simplifying assumption(s) that allow for the use of the HendersonHasselbalch equation? ${ }^{10}$

11] What is the pH of a solution consisting of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$? ${ }^{11}$
12] An experimental protocol requires a buffer at a pH of 6.50. What is the molar ratio of $[\mathrm{NaA}] /[\mathrm{HA}]$ required given: ${ }^{12}$

$$
H A=H^{+}+A^{-} \quad K_{a}=5.62 e-7
$$

13] Write down the hydrolysis reaction for $\mathrm{HCO}_{3}{ }^{-}$demonstrating that it is a weak base. ${ }^{13}$
14] The K_{b} for dichloroacetate, $\mathrm{Cl}_{2} \mathrm{CHCOO}^{-}$is \qquad 14

$$
\mathrm{Cl}_{2} \mathrm{CHCOOH} \quad \mathrm{~K}_{\mathrm{a}}=5.0 \mathrm{e}-2
$$

15] The pH of solution of 0.050 M of a weak acid, HA is 5.69 . What is K_{a} for this acid? ${ }^{15}$
16] The two K_{a} 's for salicylic acid $\left(\mathrm{H}_{2} \mathrm{~A}\right)$ are $1.07 \mathrm{e}-3$ and $1.82 \mathrm{e}-14$. What is K_{b} for sodium salicylate (NaHA)? ${ }^{16}$

17] What is K_{b} for this reaction given the following K_{a} 's? ${ }^{17}$

$$
\begin{array}{ll}
\mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b}}=? \\
\mathrm{H}_{2} \mathrm{~A}=\mathrm{HA}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=3.3 \mathrm{e}-5 \\
\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} & \mathrm{K}_{\mathrm{a} 2}=4.2 \mathrm{e}-10
\end{array}
$$

18] What is pH of solution containing $0.100 \mathrm{M} \mathrm{HOCl}\left(\mathrm{K}_{\mathrm{a}}=3.0 \mathrm{e}-8\right)$ and 0.100 M NaOCl ? ${ }^{18}$
19] What is the pH of solution that is $0.10 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{3}$? ${ }^{19}$

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{PO}_{3} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{3}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}=3 \mathrm{e}-2 \\
\mathrm{H}_{2} \mathrm{PO}_{3}^{-} \rightleftarrows \mathrm{HPO}_{3}^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a}}=1.62 \mathrm{e}-7
\end{array}
$$

20] Write the formula that describes the relative concentration of $\mathrm{H}_{2} \mathrm{PO}_{3}{ }^{-}$from a $0.10 \mathrm{~F} \mathrm{H}_{3} \mathrm{PO}_{3}$ at pH 5.00 can be calculated from which formula? ${ }^{20}$

21] What is the pH of NaHA given the following? ${ }^{21}$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A}=\mathrm{HA}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=3.3 \mathrm{e}-5 \\
\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} & \mathrm{K}_{\mathrm{a} 2}=4.2 \mathrm{e}-10
\end{array}
$$

22] What is the pH of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ given the following? ${ }^{22}$

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A}=\mathrm{HA}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=3.3 \mathrm{e}-5 \\
\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-} & \mathrm{K}_{\mathrm{a} 2}=4.2 \mathrm{e}-10
\end{array}
$$

23] How many grams of ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ and what volume (in mL) of 3.0 M NaOH solution should be added together to prepare a buffer of pH 9.50 with a final $\mathrm{NH}_{4} \mathrm{Cl}$ salt concentration of 0.10 M and a final volume of $500-\mathrm{mL}$? ${ }^{23}$

24] How many mL of 0.500 M NaOH should be added to 10.0 g of $\mathrm{HA}(157.597 \mathrm{~g} / \mathrm{mol})$ to give a pH 7.60 in a final volume of 250 mL ? $\mathrm{K}_{\mathrm{a}}=8.41 \mathrm{e}-\mathrm{g}^{24}$

Answers

[^0]```
\({ }^{10}\) formal concentrations of \(A^{-} \& H A\) are the same as equilibrium concentrations
\({ }^{11} 4.757 \mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \quad\) watch S.F.
\({ }^{12} \mathrm{~K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \quad[\mathrm{H}+]=10^{-6.50}=3.16 \mathrm{e}-7 \mathrm{M}\)
 \(5.62 \mathrm{e}-7 / 3.16 \mathrm{e}-7=\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=\mathrm{KHP}\)
\({ }^{13} \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-}\)
\({ }^{14} \mathrm{~K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=2.0 \mathrm{e}-13\)
\({ }^{15}\left[\mathrm{H}^{+}\right]=2.0 \mathrm{e}-6 \mathrm{M}\)
 \(\mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}^{-}\)
 0.050-x x x
\(K_{a}=x^{2} /(0.050-x) \cong 2.0 e-6^{2} / 0.050=8.3 e-11\)
\({ }^{16} \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}\)
\(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a}}=1.00 \mathrm{e}-14 / 1.07 \mathrm{e}-3=9.35 \mathrm{e}-12\)
\({ }^{17} \mathrm{~K}_{\mathrm{b}}=1.00 \mathrm{e}-14 / 3.3 \mathrm{e}-5=3.0 \mathrm{e}-10\)
\({ }^{18} \mathrm{~K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OCl}^{-}\right] /[\mathrm{HOCl}] \quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}[\mathrm{HOCl}] /\left[\mathrm{OCl}^{-}\right] \quad\left[\mathrm{H}^{+}\right]=3.0 \mathrm{e}-8 \quad \mathrm{pH}=7.52\)
\({ }^{19} \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)=1 / 2(1.5+6.790)=4.1\)
\({ }^{20} \frac{K_{a 1}\left[H^{+}\right]}{\left[H^{+}\right]^{2}+K_{a 1}\left[H^{+}\right]+K_{a 1} K_{a 2}}\)
\({ }^{21} \mathrm{pH}=1 / 2(\mathrm{pKa} 1+\mathrm{pKa} 2) \quad\) pKa1 \(=-\log (3.3 \mathrm{e}-5)=4.48 \quad\) pKa2 \(=-\log (4.2 \mathrm{e}-10)=\)
9.38
\[
\mathrm{pH}=6.93
\]
\({ }^{22}\) only \(K_{a 1}\) will be important as \(K_{a 1} \gg K_{a 2}\), so
\begin{tabular}{lllll}
\(\mathrm{H}_{2} \mathrm{~A}=\) & \(\mathrm{HA}^{-}\) & + & \(\mathrm{H}^{+}\) \\
0.10 M & 0 & 0 & & \\
\(-x\) & \(+x\) & & \(+x\) & \(K_{a 1}=3.3 e-5 \cong x^{2} / 0.10 \quad x=1.8 e-3\)
\end{tabular}\(\quad \mathrm{pH}=\)
```

23[H+}[=3.2e-10 M
NH44
Ka}=[\mp@subsup{H}{}{+}][\mp@subsup{NHH}{3}{}]/[\mp@subsup{NHH}{4}{+}

```

First calculate the ratio \(\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]\)
\(\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]=\mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]=5.70 \mathrm{e}-10 / 3.2 \mathrm{e}-10 \mathrm{M}=1.8\)
If \(\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=0.10 \mathrm{M}\), then \(\left[\mathrm{NH}_{3}\right]=0.18 \mathrm{M}\)
MBE: Initial \(\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]+\left[\mathrm{NH}_{3}\right]=0.10+0.18=0.28 \mathrm{M}\)
Mass Initial \(\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=0.28 \mathrm{M}^{*} 0.500 \mathrm{~L}^{*}(53.5 \mathrm{~g})=7.49 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}\)
For the reaction: \(\quad \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}=\mathrm{NH}_{3}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}\)
Add vol \(\mathrm{NaOH}=0.18 \mathrm{M} * 0.500 \mathrm{~L} * 1 / 3.0 \mathrm{M} * 1000 \mathrm{~mL} / \mathrm{L}=\mathbf{3 0} \mathrm{mL} \mathrm{NaOH}\)
\({ }^{24} \mathrm{Mol} \mathrm{HA}=10.0 \mathrm{~g} *(\mathrm{~mol} / 157.597 \mathrm{~g})=6.35 \mathrm{e}-2\)
Rxn: \(\mathrm{HA}+\mathrm{OH}^{-}=\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}\)
Mol: \(6.35 \mathrm{e}-2 \mathrm{x} \quad 0\)
\(-x \quad-x \quad+x\)
\([H A]=(6.35 e-2-x) \quad \&\)
\(\left[\mathrm{OH}^{-}\right]=\left[\mathrm{A}^{-}\right]=\mathrm{x}\)
\(\left[\mathrm{H}^{+}\right]=2.51 \mathrm{e}-8 \mathrm{M}\)
\(\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\)
\(8.41 \mathrm{e}-9=2.51 \mathrm{e}-8 \mathrm{x} /(6.35 \mathrm{e}-2-\mathrm{x})\)
\(\mathrm{x}=1.59 \mathrm{e}-2 \mathrm{~mol}\)
\(1.59 \mathrm{e}-2 \mathrm{~mol}^{*}(\mathrm{~L} / 0.500 \mathrm{~mol})=31.9 \mathrm{~mL}\)```

[^0]: ${ }^{1} \mathrm{pH}=\mathrm{pKa}+\log [$ base $] /[$ acid $]=4.757$
 ${ }^{2}$ acid C
 ${ }^{3} 0.99$
 ${ }^{4} 1.75 \mathrm{e}-5=\left[\mathrm{H}^{+}\right] 0.10 / 0.10 \quad\left[\mathrm{H}^{+}\right]=1.75 \mathrm{e}-5 \mathrm{pH}=4.757$
 ${ }^{5} \mathrm{pH}=1 / 2(-\log 7.7 \mathrm{e}-5+-\log 9.3 \mathrm{e}-11)=7.07$
 ${ }^{6} 1.48$ only $\mathrm{K}_{\mathrm{a} 1}$ is important. $\quad \mathrm{x}^{2} /(1.0-\mathrm{x})=1.12 \mathrm{e}-3 ; \mathrm{x}=0.0335$
 ${ }^{7} 0.50, \mathrm{D}=[1.0 \mathrm{e}-3]^{2}+[1.0 \mathrm{e}-3]^{2}+[1.0 \mathrm{e}-3 * 1.0 \mathrm{e}-9]=2.0 \mathrm{e}-6, \mathrm{~N}=[1.0 \mathrm{e}-3]^{2}=1.0 \mathrm{e}-6, \alpha=0.50$
 ${ }^{8} \alpha_{H 2 A}=\left[H^{+}\right]^{2} /\left[H^{+}\right]^{2}+K_{a 1}\left[H^{+}\right]+K_{a 1} K_{a 2}$
 ${ }^{9} 8.34=1 / 2\left(p K_{a 1}+p K_{a 2}\right)$

