4 - Titrations

1] A common primary standard for the standardization of bases is
\qquad 1

2] Solutions of $\mathrm{NaOH}(\mathrm{aq})$ titrant must be re-standardized frequently because 2

3] Which of the following is not a primary standard? ${ }^{3}$
a) Potassium Hydrogen Phthalate (KHP)
b) Benzoic Acid
c) Potassium Hydrogen lodate
d) NaOH
e) NaHCO_{3}

4] Why would KHP (MW = 204.22) be preferred over $\mathrm{NaHCO}_{3}(\mathrm{MW}=84.007 \mathrm{~g} / \mathrm{mol})$ as primary standard? ${ }^{4}$

5] What is the difference between the end point and equivalence point for a monobasicmonoacid titration? ${ }^{5}$

6] What is the final pH if solutions of $200.0-\mathrm{mL}$ of $0.0500 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and $75.0-\mathrm{mL}$ of 0.100 M $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ are added together? ${ }^{6}$

7] When titrating a weak acid with a strong base it is expected that the equivalence point will be ${ }^{7}$
a) Slightly acidic, since the equilibrium $\mathrm{HA}=\mathrm{H}^{+}+\mathrm{A}^{-}$predominates.
b) Neutral since $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]$
c) Slightly basic since the equilibrium $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{HA}^{+}+\mathrm{OH}^{-}$predominates.
d) It is impossible to know since it could be acidic or basic depending on the K_{a} of the acid.
e) Strongly basic since excess OH^{-}is present.

8] What is the pH of the solution that results from mixing of 25.00 mL of 0.250 M of a weak acid $\mathrm{H}_{2} \mathrm{~A}$ with 25.00 mL of 0.250 M NaOH ? 8

$$
\mathrm{H}_{2} \mathrm{~A}=\mathrm{HA}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a} 1}=1.00 \mathrm{e}-4
$$

$$
\mathrm{HA}^{-}=\mathrm{A}^{2-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a} 2}=1.00 \mathrm{e}-7
$$

9] A sample solution of 50.00 mL 0.0500 M oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is titrated with 50.00 mL of 0.1000 M of NaOH . Which of the following is true after the two solutions are mixed? ${ }^{9}$
a) This is the first equivalence point.
b) This a pH buffer region where $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$
c) This is a metal buffer region
d) This is the second equivalence point.
e) This is the excess OH^{-}region where the pH is strongly alkaline.

10] A sample solution of 50.00 mL 0.0500 M oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is titrated with 35.00 mL of 0.1000 M of NaOH . Which of the following is true after the two solutions are mixed? ${ }^{10}$
a) There is 2.50 mmol of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ present.
b) There is $1.50 \mathrm{mmol}^{\mathrm{mm}} \mathrm{OH}^{-}$present.
c) There is 2.50 mmol of $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$present.
d) There is 1.00 mmol of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ present.
e) There is 1.00 mmol of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ present

11] What is the pH of a titration solution that consists of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}=1.75 \mathrm{e}-5\right)$ and 0.050 M NaOH ? ${ }^{11}$

12] What is the pH of a titration solution that has 10.00 mL of 0.100 M HA with 15.00 mL of 0.100 M NaOH added titrant? $\mathrm{Ka}(\mathrm{HA})=9.22 \mathrm{e}-5{ }^{12}$

13] Calculate the pH of a mixture of 25.00 mL of 0.500 M NaOH and 25.00 mL of 0.250 M $\mathrm{H}_{3} \mathrm{AsO}_{4}$ (arsenic acid). ${ }^{13}$

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{AsO}_{4}=\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=5.8 \mathrm{e}-3 \\
\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}=\mathrm{HAsO}_{4}{ }^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 2}=1.10 \mathrm{e}-7 \\
\mathrm{HAsO}_{4}{ }^{2-}=\mathrm{AsO}_{4}^{3-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 3}=3.2 \mathrm{e}-12
\end{array}
$$

14] A sample solution of 50.00 mL 0.0500 M oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is titrated with 50.00 mL of 0.1000 M of NaOH . Which of the following is true after the two solutions are mixed? ${ }^{14}$
a) This is the first equivalence point.
b) This a pH buffer region where $\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]=\left[\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right]$
c) This is a metal buffer region
d) This is the second equivalence point.

This is the excess OH^{-}region where the pH is strongly alkaline.
15] A solution of 50.00 mL 0.0500 M oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is mixed with 60.00 mL of 0.1000 M of NaOH . What is the pH of the final solution? ${ }^{15}$
a) 2.04
b) 3.55
c) 13.00
d) 11.96
e) 12.52

16] $75.0-\mathrm{mL}$ of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})(\mathrm{pKa}=4.757$) is titrated with $0.0500 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the volume of NaOH solution required to reach the equivalence point?

What is the pH of the equivalence point? ${ }^{16}$
17] A] Calculate pH of 50.00 mL of 0.0200 M HA with $\mathrm{pKa}=6.15$ before any base is added.
B] pH when 3.00 mL of 0.100 M NaOH is added.
C] pH when 10.00 mL of 0.100 M NaOH is added.
D] pH when 10.10 mL of 0.100 M NaOH is added. ${ }^{17}$
18] A $50.0-\mathrm{mL}, 0.150 \mathrm{M}$ solution of $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is titrated with $0.25 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. Calculate the volume of titrant and the pH^{\prime} s needed to reach ϕ of $0.75,1.00$, and $1.25 .{ }^{18}$

19] A 0.527 g sample of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}$, and inert impurities was titrated with 0.109 M HCl , requiring 15.7 mL to reach the first end point and a total of 43.8 mL to reach the second endpoint. What is the percent $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} in the mixture? ${ }^{19}$

Answers

[^0]
${ }^{3} \mathrm{NaOH}$

${ }^{4}$ The higher MW gives more accuracy in weighing out stoichiometric quantities of KHP.
${ }^{5}$ The equivalence point is where mol acid $=\mathrm{mol}$ base and the end point is where indicator changes color.

Note that:	$\mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}-$
	$\mathrm{HA}^{-}=\mathrm{H}^{+}+\mathrm{A}^{2-}$

Amphoteric $\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)=1 / 2(-\log (1.00 \mathrm{e}-4)+-\log (1.00 \mathrm{e}-7))=1 / 2(4.000+7.000)=5.500$
${ }^{9} \mathrm{D}$
${ }^{10}$ e: 1.00 mmol past 1st eq. pt. Initial HA- $=2.5 \mathrm{mmol}$
$\mathrm{HA}^{-}+\mathrm{OH}^{-}=\mathrm{A}^{2-}+\mathrm{H}_{2} \mathrm{O}$
$2.50 \quad 1.00 \quad 0$
$\begin{array}{lll}-1.00 & -1.00 & +1.00\end{array}$
$1.50 \quad 0 \quad 1.00$
$1.00 \mathrm{mmol}^{2-}$
${ }^{11} \mathrm{pH}=\mathrm{pKa}=4.76$
${ }^{12}$ Amount of $\mathrm{HA}=10.00 \mathrm{~mL}(0.100 \mathrm{M})=1.00 \mathrm{mmoles}$
Amount $\mathrm{OH}-=15.00 \mathrm{~mL}(0.100 \mathrm{M})=1.50 \mathrm{mmoles}$
Excess OH- = 1.50-1.00 mmoles $=0.50$ mmoles $\quad[\mathrm{OH}-]=0.50 \mathrm{mmoles} / 25.00 \mathrm{~mL}=2.0 \mathrm{e}-2 \mathrm{M}$
$\mathrm{pOH}=1.70 \quad \mathrm{pH}=\mathbf{1 2 . 3 0}$
${ }^{13} 2^{\text {nd }}$ eq. pt where all $\mathrm{H}_{3} \mathrm{AsO}_{4}$ is titrated to $\mathrm{HAsO}_{4}{ }^{2-}$ which is intermediate of $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}$and $\mathrm{AsO}_{4}{ }^{3-}$.
These two equilibria become important:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{-}=\mathrm{HAsO}_{4}{ }^{2-}+\mathrm{H}^{+} \\
& \mathrm{K}_{\mathrm{a} 2}=1.10 \mathrm{e}-7 \\
& \mathrm{HAsO}_{4}{ }^{2-}=\mathrm{AsO}_{4}{ }^{3-}+\mathrm{H}^{+} \\
& K_{a 3}=3.2 \mathrm{e}-12 \\
& \text { Therefore } \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 2}+\mathrm{pK}_{\mathrm{a} 3}\right) \\
& =1 / 2(6.958 \underline{6}+11.49 \underline{5})=9.23 \\
& { }^{14} \text { This is the second equivalence point. } \\
& { }^{15} 2 * 0.05 * 50=5 \mathrm{mmol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \\
& 0.10 * 60=6 \mathrm{mmol} \mathrm{NaOH} \\
& \text { excess } \mathrm{OH}^{-}=6-5 \mathrm{mmol}=1 \mathrm{mmol} \\
& {[\mathrm{OH}-]=1 \mathrm{mmol} / 110 \mathrm{~mL}=9.09 \mathrm{e}-3} \\
& \mathrm{pOH}=2.0413 \\
& \mathrm{pH}=11.96 \\
& { }^{16} \text { eq. pt. } \mathrm{mol} \mathrm{CH}_{3} \mathrm{COOH}=\mathrm{mol} \mathrm{OH}^{-} \\
& \mathrm{mol} \mathrm{CH}_{3} \mathrm{COOH}=75.0-\mathrm{mL}^{*} 0.100 \mathrm{M}=7.50 \mathrm{mmol} \\
& \text { vol } \mathrm{NaOH}=7.50 \mathrm{mmol} / 0.0500 \mathrm{M}=150-\mathrm{mL}
\end{aligned}
$$

```
total volume = 150-mL+75.0-mL = 225-mL
    [CH3COO-] = 7.50 mmol}/225-\textrm{mL}=3.33\textrm{e}-2\textrm{M
    CH3COO-}+\mp@subsup{\textrm{H}}{2}{}\textrm{O}=\mp@subsup{\textrm{CH}}{3}{}\textrm{COOH}+\mp@subsup{\textrm{OH}}{}{-
    3.33e-2 -- 0
    -x -- +x +x
    Kb}=\mp@subsup{K}{w}{}/\mp@subsup{K}{a}{}=5.71e-1
    = x
    x=4.36e-6
pOH = 5.360 pH=8.640
\mp@subsup{}{}{17}A] HA= H+
    0.020 0 0
    -x +x +x x x / 0.0200-x = 7.08e-7 x = 1.19e-4
[H+
B] Initial HA \(=50.00\) * \(0.0200=1.00 \mathrm{mmol}\)
Rxn:
\(\mathrm{HA}+\quad \mathrm{OH}^{-}=\mathrm{A}^{-}+\quad \mathrm{H}_{2} \mathrm{O}\)
\(1.00 \mathrm{mmol} \quad 0.300 \quad 0\)
\(-0.300-0.300+0.300\)
\(\begin{array}{lll}0.700 & 0 & 0.300\end{array}\)
Buffer system \(\quad \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\)
\(\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]=7.08 \mathrm{e}-7^{*} 0.700 / 0.300\)
\(\mathrm{pH}=5.78\)
C] OH - added \(=1.00 \mathrm{mmol}\) we are at the eq. pt.
```

Rxn:

HA+	$\mathrm{OH}^{-}=$	$\mathrm{A}^{+}+\mathrm{H}_{2} \mathrm{O}$
1.00	1.00	0 mmol
-1.00	-1.00	+1.00 mmol
0	0	1.00 mmol

Rxn:

$$
\begin{aligned}
& \mathrm{A}^{-}+\quad \mathrm{H}_{2} \mathrm{O}= \\
& \mathrm{HA}+\quad \mathrm{OH}^{-} \\
& 0.01667--\quad 0 \quad 0 \\
& -x \quad+x \quad+x \\
& K_{b}=K_{w} / K_{a}=1.41 \mathrm{e}-8=x^{2} /(0.01667-\mathrm{x}) \\
& \mathrm{x}=1.533 \mathrm{e}-5
\end{aligned}
$$

$\mathrm{pH}=9.19$
D] Excess $\mathrm{OH}^{-}=0.10 \mathrm{~mL}^{*} 0.100 \mathrm{M}=0.010 \mathrm{mmol}$

$$
\left[\mathrm{OH}^{-}\right]=0.010 \mathrm{mmol} / 60.10 \mathrm{~mL}=1.66 \mathrm{e}-4 \mathrm{M}
$$

$\mathrm{pH}=10.22$
${ }^{18} \phi=\mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}=\mathrm{mol}_{\mathrm{b}} / \mathrm{mol}_{\mathrm{a}}$
$\mathrm{mol}_{\mathrm{a}}=0.0500-\mathrm{L}^{*} 0.150 \mathrm{M}$
$=7.50 \mathrm{e}-3 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$
for $\phi=0.75 \quad \mathrm{~mol}_{\mathrm{b}}=5.63 \mathrm{e}-3 \mathrm{~mol}$
vol $\mathrm{NaOH}=5.63 \mathrm{e}-3 \mathrm{~mol} * 1 / 0.25 \mathrm{M}$
$=2.25 \mathrm{e}-2 \mathrm{~L}=23-\mathrm{mL}$
for pH Rxn:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
$7.50 \mathrm{e}-3 \quad 5.63 \mathrm{e}-3 \quad 0 \mathrm{~mol}$

```
    -5.63e-3 -5.63e-3 +5.63e-3 mol
    1.87e-3 0 5.63e-3 mol
    [CH3COOH] = 1.87e-3 mol}/0.073 L = 2.6e-2M
    [CH3COO-] = 5.63e-3 mol/0.073 L = 7.7e-2 M
    Ka=1.75e-5 = [H+}][7.7\textrm{e}-2]/[2.6\textrm{e}-2]\quad[\mp@subsup{\textrm{H}}{}{+}]=5.9\textrm{e}-
    pH=5.23
for }\phi=1.00 \mp@subsup{mol}{b}{}=7.5\textrm{e}-3\textrm{mol
    all HA is consumed since molb}=\mp@subsup{\textrm{mol}}{\textrm{a}}{}\mathrm{ therefore vol NaOH
    = 7.5e-3 mol*(1/0.25 M) = 3.0e-2 L or 30-mL
    [A-] = 7.5e-3 mol}/0.0800 L = 0.094 M
    A- + H2O = HA +OH
    0.094-x x x
    x
    = 1e-14/1.75e-5 = 5.71e-10
    x = 7.3e-6
    pOH=5.14 pH=8.86
for }\phi=1.25 \mp@subsup{mol}{b}{}=9.4\textrm{e}-3\textrm{mol
    vol NaOH = 9.4e-3 mol*}(1/0.25M)=38-m
    region of excess OH-
    mol OH- = 9.4e-3-7.5e-3 = 1.9e-3
[OH
19}\mathrm{ The first end point is due to: }\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{CO}}{3}{2-}\mathrm{ - 目 }\mp@subsup{\textrm{HCO}}{3}{-
    mol of CO33-}\mp@subsup{}{}{2-}=0.109 mol/L * 15.7 mL = 1.71 mmols
    The 2 nd endpoint is due to: }\mp@subsup{\textrm{H}}{}{+}+\mp@subsup{\textrm{HCO}}{3}{-}\mathrm{ - 且 }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{CO}}{3}{
```

Remember that the second endpoint is due to HCO_{3}^{-}from the first endpoint $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and from $\mathrm{HCO}_{3}{ }^{-}$from NaHCO_{3}.

Therefore $\mathrm{HCO}_{3}{ }^{-}$from NaHCO_{3} is calculated as:
$0.109 \mathrm{~mol} / \mathrm{L}$ * $43.8 \mathrm{~mL}-2$ * $1.71 \mathrm{mmols}=1.35 \mathrm{mmol}$
$\% \mathrm{Na}_{2} \mathrm{CO}_{3},=1.71 \mathrm{e}-3 \mathrm{~mol} * 106.0 \mathrm{~g} / \mathrm{mol} * 100 / 0.527 \mathrm{~g}=34.4 \%$
$\% \mathrm{NaHCO}_{3}=1.35 \mathrm{e}-3 \mathrm{~mol} * 84.0 \mathrm{~g} / \mathrm{mol} * 100 / 0.527 \mathrm{~g}=21.5 \%$

[^0]: ${ }^{1}$ Potassium Hydrogen Phthalate
 ${ }^{2}$ solvation of CO_{2} from the atmosphere producing $\mathrm{H}_{2} \mathrm{CO}_{3}$

