4 – Titrations

1] A common primary standard for the standardization of bases is

2] Solutions of NaOH(aq) titrant must be re-standardized frequently because

_____2

1

3] Which of the following is not a primary standard?³

a) Potassium Hydrogen Phthalate (KHP)

- b) Benzoic Acid
- c) Potassium Hydrogen Iodate
- d) NaOH
- e) NaHCO₃

4] Why would KHP (MW = 204.22) be preferred over NaHCO₃ (MW = 84.007g/mol) as primary standard? 4

5] What is the difference between the end point and equivalence point for a monobasic-monoacid titration? $^{\rm 5}$

6] What is the final pH if solutions of 200.0-mL of 0.0500 M NaOH(aq) and 75.0-mL of 0.100 M CH₃COOH(aq) are added together? 6

7] When titrating a weak acid with a strong base it is expected that the equivalence point will be 7

- a) Slightly acidic, since the equilibrium $HA = H^+ + A^-$ predominates.
- b) Neutral since [OH⁻] = [H⁺]
- c) Slightly basic since the equilibrium $A^2 + H_2O = HA + OH^2$ predominates.
- d) It is impossible to know since it could be acidic or basic depending on the K_a of the acid.
- e) Strongly basic since excess OH⁻ is present.

8] What is the pH of the solution that results from mixing of 25.00 mL of 0.250 M of a weak acid H_2A with 25.00 mL of 0.250 M NaOH?⁸

$$H_2A = HA^- + H^+$$
 $K_{a1} = 1.00e-4$

$$HA^{-} = A^{2-} + H^{+}$$
 $K_{a2} = 1.00e-7$

9] A sample solution of 50.00 mL 0.0500 M oxalic acid ($H_2C_2O_4$) is titrated with 50.00 mL of 0.1000 M of NaOH. Which of the following is true after the two solutions are mixed? ⁹

- a) This is the first equivalence point.
- b) This a pH buffer region where $[H_2C_2O_4] = [HC_2O_4^-]$
- c) This is a metal buffer region
- d) This is the second equivalence point.
- e) This is the excess OH⁻ region where the pH is strongly alkaline.

10] A sample solution of 50.00 mL 0.0500 M oxalic acid ($H_2C_2O_4$) is titrated with 35.00 mL of 0.1000 M of NaOH. Which of the following is true after the two solutions are mixed? ¹⁰

- a) There is 2.50 mmol of $H_2C_2O_4$ present.
- b) There is 1.50 mmol of OH⁻ present.
- c) There is 2.50 mmol of $HC_2O_4^-$ present.
- d) There is 1.00 mmol of $H_2C_2O_4$ present.
- e) There is 1.00 mmol of $C_2O_4^{2-}$ present

11] What is the pH of a titration solution that consists of 0.100 M CH₃COOH (K_a = 1.75e-5) and 0.050 M NaOH? $^{\rm 11}$

12] What is the pH of a titration solution that has 10.00 mL of 0.100 M HA with 15.00 mL of 0.100 M NaOH added titrant? Ka (HA) = $9.22e-5^{12}$

13] Calculate the pH of a mixture of 25.00 mL of 0.500 M NaOH and 25.00 mL of 0.250 M H_3AsO_4 (arsenic acid). ¹³

$H_3AsO_4 = H_2AsO_4^- + H^+$	K _{a1} = 5.8e-3
$H_2AsO_4^- = HAsO_4^{2-} + H^+$	K _{a2} = 1.10e-7
$HAsO_4^{2-} = AsO_4^{3-} + H^+$	K _{a3} = 3.2e-12

14] A sample solution of 50.00 mL 0.0500 M oxalic acid ($H_2C_2O_4$) is titrated with 50.00 mL of 0.1000 M of NaOH. Which of the following is true after the two solutions are mixed? ¹⁴

- a) This is the first equivalence point.
- b) This a pH buffer region where $[H_2C_2O_4] = [HC_2O_4]$
- c) This is a metal buffer region
- d) This is the second equivalence point.

This is the excess OH⁻ region where the pH is strongly alkaline.

15] A solution of 50.00 mL 0.0500 M oxalic acid ($H_2C_2O_4$) is mixed with 60.00 mL of 0.1000 M of NaOH. What is the pH of the final solution? ¹⁵

- a) 2.04
- b) 3.55
- c) 13.00
- d) 11.96
- e) 12.52

16] 75.0-mL of 0.100 M CH₃COOH(aq) (pKa = 4.757) is titrated with 0.0500 M NaOH(aq). What is the volume of NaOH solution required to reach the equivalence point?

What is the pH of the equivalence point? 16

17] A] Calculate pH of 50.00 mL of 0.0200 M HA with pKa = 6.15 before any base is added.

B] pH when 3.00 mL of 0.100 M NaOH is added.

C] pH when 10.00 mL of 0.100 M NaOH is added.

D] pH when 10.10 mL of 0.100 M NaOH is added. $^{\rm 17}$

18] A 50.0-mL, 0.150 M solution of CH₃COOH (aq) is titrated with 0.25 M NaOH(aq). Calculate the volume of titrant and the pH's needed to reach ϕ of 0.75, 1.00, and 1.25. ¹⁸

19] A 0.527 g sample of a mixture of Na_2CO_3 , $NaHCO_3$, and inert impurities was titrated with 0.109 M HCl, requiring 15.7 mL to reach the first end point and a total of 43.8 mL to reach the second endpoint. What is the percent Na_2CO_3 and $NaHCO_3$ in the mixture? ¹⁹

Answers

¹ Potassium Hydrogen Phthalate

² solvation of CO₂ from the atmosphere producing H₂CO₃

³ NaOH

⁴ The higher MW gives more accuracy in weighing out stoichiometric quantities of KHP.

⁵ The equivalence point is where mol acid = mol base and the end point is where indicator changes color.

⁶ mol CH₃COOH = 75.0-mL*0.100 M = 7.50 mmol

mol OH⁻ = 200.0-mL*0.0500 M= 10.0 mmmol

excess OH- = 10.0 - 7.50 mmol = 2.50 mmol

[OH⁻] = 2.50 mmol/275-mL = 9.09e-3

pOH = 2.041

pH = 11.959

⁷ C

⁸ 1 eq pt, therefore mol HA ⁻ = 25.00 mL (0.250 [HA ⁻] = 6.25 mmol/50.00 m		,
Note that:	$HA^{-} + H_2O = H_2A + OH - HA^{-} = H^+ + A^{2-}$	are both possible therefore amphoteric
Amphoteric	$pH = \frac{1}{2} (pK_{a1} + pK_{a2}) = \frac{1}{2} (-log(1.00e-4) + -log(1.00e-7)) = \frac{1}{2} (4.000 + 7.000) = 5.500$	

⁹ D

¹⁰ e: 1.00 mmol past 1st eq. pt. Initial HA- = 2.5 mmol

 $HA^{-} + OH^{-} = A^{2-} + H_{2}O$ 2.50 1.00 0
-1.00 +1.00
1.50 0 1.00

1.00 mmol A²⁻

¹¹ pH = pKa = 4.76

¹² Amount of HA = 10.00 mL (0.100 M) = 1.00 mmoles Amount OH- = 15.00 mL (0.100 M) = 1.50 mmoles

Excess OH- = 1.50 – 1.00 mmoles = 0.50 mmoles [OH-] = 0.50 mmoles / 25.00 mL = 2.0e-2 M

pOH = 1.70 **pH = 12.30**

¹³ 2^{nd} eq. pt where all H₃AsO₄ is titrated to HAsO₄²⁻ which is intermediate of H₂AsO₄⁻ and AsO₄³⁻. These two equilibria become important:

$$H_2AsO_4^- = HAsO_4^{2-} + H^+$$

 $K_{a2} = 1.10e-7$
 $HAsO_4^{2-} = AsO_4^{3-} + H^+$
 $K_{a3} = 3.2e-12$
Therefore pH = ½(pK_{a2} + pK_{a3})

= ½ (6.958<u>6</u> + 11.49<u>5</u>) = 9.23

¹⁴ This is the second equivalence point.

¹⁵ 2*0.05*50 = 5 mmol H₂C₂O₄

0.10*60 = 6 mmol NaOH

excess
$$OH^{-} = 6 - 5 \text{ mmol} = 1 \text{ mmol}$$

pOH = 2.0413

pH = 11.96

¹⁶ eq. pt. mol $CH_3COOH = mol OH^-$

mol CH₃COOH = 75.0-mL*0.100 M = 7.50 mmol

vol NaOH = 7.50 mmol/0.0500 M = 150-mL

total volume = 150-mL+75.0-mL = 225-mL [CH₃COO⁻] = 7.50 mmol/225-mL = 3.33e-2 M $CH_3COO^- + H_2O = CH_3COOH + OH^-$ 3.33e-2 0 0 --- X -- + X + x $K_b = K_w/K_a = 5.71e-10$ $= x^2/(3.33e-2-x) \approx x^2/(3.33e-2)$ x = 4.36e-6 pOH = 5.360 pH =8.640 ¹⁷ A] HA= H⁺+ Α 0.020 0 0 x² / 0.0200-x = 7.08e-7 x = 1.19e-4 -X +x +x [H⁺] = 3.92 B] Initial HA = 50.00 * 0.0200 = 1.00 mmol OH- added = 0.300 mmol

Builder Stoller Liese ministEnhance Charles CharlesRxn:HA+OH^= A^+ H_2O1.00 mmol0.300-0.300

pH = 5.78

C] OH- added = 1.00 mmol we are at the eq. pt.

Rxn:

HA+ OH⁻= A⁻+ H_2O 1.00 1.00 0 mmol -1.00 -1.00 +1.00 mmol 0 0 1.00 mmol [A⁻] = 1.00 mmol / 60.00 mL = 0.01667 M Rxn: A⁻+ $H_2O = HA +$ OH-0.01667 --0 0 +χ -X +χ $K_b = K_w / K_a = 1.41e-8 = x^2 / (0.01667-x)$ x = 1.533e-5

pH = 9.19

D] Excess OH⁻ = 0.10 mL * 0.100 M = 0.010 mmol

[OH⁻] = 0.010 mmol / 60.10 mL = 1.66e-4 M

pH = 10.22¹⁸ $\phi = C_b/C_a = mol_b/mol_a$

mol_a = 0.0500-L*0. 150M

= 7.50e-3 mol CH₃COOH

for $\phi = 0.75$ mol_b = 5.63e-3 mol vol NaOH = 5.63e-3 mol * 1/0.25 M = 2.25e-2 L = 23-mL for pH Rxn: CH₃COOH + OH⁻ = CH₃COO⁻ + H₂O 7.50e-3 5.63e-3 0mol -5.63e-3 -5.63e-3 +5.63e-3 mol

1.87e-3 0 5.63e-3 mol $[CH_3COOH] = 1.87e-3 mol/0.073 L = 2.6e-2M$ $[CH_3COO^-] = 5.63e-3 mol/0.073 L = 7.7e-2 M$ Ka = 1.75e-5 = $[H^+][7.7e-2]/[2.6e-2]$ $[H^+] = 5.9e-6$ pH = 5.23

for $\phi = 1.00$ mol_b = 7.5e-3 mol

all HA is consumed since $mol_b = mol_a$ therefore vol NaOH = 7.5e-3 mol*(1/0.25 M) = 3.0e-2 L or 30-mL [A⁻] = 7.5e-3 mol/0.0800 L = 0.094 M A⁻ + H₂O = HA + OH⁻ 0.094-x x x x $x^2/0.094$ -x = K_b = K_w/K_a = 1e-14/1.75e-5 = 5.71e-10

x = 7.3e-6

pOH = 5.14 pH = 8.86

for $\phi = 1.25$ mol_b = 9.4e-3 mol

vol NaOH = 9.4e-3 mol*(1/0.25M) = 38-mL

region of excess OH⁻

mol OH- = 9.4e-3 - 7.5e-3 = 1.9e-3

 $[OH^{-}] = 1.9e-3 \text{ mol}/0.088 \text{ L} = 2.2e-2pOH = 1.67$ pH = 12.33

¹⁹ The first end point is due to: $H^+ + CO_3^{2-}$ $\square HCO_3^{-}$

mol of $CO_3^{2-} = 0.109 \text{ mol/L} * 15.7 \text{ mL} = 1.71 \text{ mmols}$

The 2nd endpoint is due to: H⁺ + HCO₃⁻ P H₂CO₃

Remember that the second endpoint is due to HCO_3^- from the first endpoint (Na₂CO₃) and from HCO_3^- from NaHCO₃.

Therefore HCO₃⁻ from NaHCO₃ is calculated as:

0.109 mol/L * 43.8 mL - 2 * 1.71 mmols = 1.35 mmol

% Na₂CO₃, = 1.71e-3 mol * 106.0 g/mol * 100/0.527g = 34.4%

% NaHCO₃ = 1.35e-3 mol * 84.0 g/mol * 100/0.527g = 21.5%