5 – EDTA Titrations

Table 13-1 Values of and for		Table 13-2 Formation constants for metal-EDTA complexes					
EDTA at 20°C and $\mu = 0.10$ M		Ion	log K _f	Ion	log K _f	Ion	log K _f
		Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
рН	$\alpha_{Y^{4-}}$	Na ⁺	1.66	Fe ³⁺	25.1	Pr ³⁺	16.40
0	1.3×10^{-23}	K ⁺	0.8	Co ³⁺	41.4 (25°C)	Nd ³⁺	16.61
0	1.3×10^{-18}	Be^{2+}	9.2	Zr^{4+}	29.5	Pm ³⁺	17.0
1	1.9×10^{-10}	Mg^{2+}	8.79	Hf^{4+}	29.5 ($\mu = 0.2$)	Sm ³⁺	17.14
2	3.3×10^{-14}	Ca^{2+}	10.69	VO^{2+}	18.8	Eu ³⁺	17.35
3	2.6×10^{-11}	Sr ²⁺	8.73	VO_2^+	15.55	Gd ³⁺	17.37
4	3.8×10^{-9}	Ba^{2+}	7.86	Ag^+	7.32	Tb ³⁺	17.93
5	3.7×10^{-7}	Ra ²⁺	7.1	Tl ⁺	6.54	Dy ³⁺	18.30
6	2.3×10^{-5}	Sc ³⁺	23.1	Pd^{2+}	18.5 (25°C,	Ho^{3+}	18.62
7	5.0×10^{-4}	Y^{3+}	18.09		$\mu = 0.2)$	Er ³⁺	18.85
7	5.0×10^{-3}	La^{3+}	15.50	Zn ²⁺	16.50	Tm ³⁺	19.32
8	5.6×10^{-5}	V^{2+}	12.7	Cd^{2+}	16.46	Yb ³⁺	19.51
9	5.4×10^{-2}	Cr^{2+}	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
10	0.36	Mn^{2+}	13.87	Sn ²⁺	$18.3 \ (\mu = 0)$	Am ³⁺	17.8 (25°C)
11	0.85	Fe ²⁺	14.32	Pb^{2+}	18.04	Cm ³⁺	18.1 (25°C)
12	0.98	Co^{2+}	16.31	Al ³⁺	16.3	Bk ³⁺	18.5 (25°C)
13	1.00	Ni ²⁺	18.62	Ga ³⁺	20.3	Cf^{3+}	18.7 (25°C)
14	1.00	Cu^{2+}	18.80	In ³⁺	25.0	Th ⁴⁺	23.2
1-	1.00	Ti ³⁺	21.3 (25°C)	Tl ³⁺	37.8 ($\mu = 1.0$)	U^{4+}	25.8
		V^{3+}	26.0	Bi ³⁺	27.8	Np ⁴⁺	24.6 (25°C, $\mu = 1.0$)
		Cr ³⁺	23.4				

Table 12 2 ...

1] What is the fraction of EDTA in the Y^{4-} form at pH 5? ¹

2] In reference to EDTA titrations the symbol, α_{y4-} , indicates which of the following?²

- a) The fraction of metal chelated by EDTA
- b) The concentration of EDTA in the Y⁴⁻ form.
- c) The fraction of EDTA in the Y⁴⁻ form.
- d) The analytical concentration of metal.
- e) The fraction of EDTA not in the Y⁴⁻ form.

3] What is the fraction of EDTA in the Y^{4-} form at pH 7.00? ³

- a) 1.00
- b) 5.0e-4
- c) 0.36
- d) 0.500
- e) 3.3e-14

4] The conditional formation constant K_f' for CaY²⁻ is related to K_f through which of the relationships?⁴

a) $K_f' = K_f$ at pH =0 b) $K_f' = \alpha_{y4}K_f$

c) $K_f = \alpha_{y4}K_f'$ d) $K_f' = 1 / K_f$ e) $K_f' = K_f^2$

5] It is advantageous to conduct EDTA titrations of metal ions in ⁵

- a) acidic pH's to assist metal ion hydrolysis
- b) basic pH's to prevent metal ion hydrolysis
- c) basic pH's to maximize Y⁴⁻ fraction
- d) basic pH's to minimize Y⁴⁻ fraction
- e) acidic pH's to maximize Y⁴⁻ fraction

6] What is K_f for SrEDTA²⁻ at pH 11?⁶

7] The formal concentration of EDTA is 1.00 mM. What is the concentration of the Y^4- form at pH 4? 7

8] What is the conditional formation constant of CaEDTA²⁻ at pH 10.00? ⁸

9] What is the conditional formation constant K_f for CoY²⁻ at pH 10? ⁹

10] The fraction of free metal (α_m) in the following equilibrium can be expressed as: ¹⁰ M + L = ML $\beta = [ML] / [M][L]$

11] Given that α_{y4-} = 3.8e-9 at pH 4.00 & α_{y4-} = 1.9e-18 at pH 1.00 what is the conditional formation constant for FeY⁻ at those pH's. log K_f = 25.1 ¹¹

12] Calculate the concentrations of free Fe³⁺ in a 0.10 M FeY⁻ solution at pH 4.00 and 1.00. 12

13] Which of the three regions below is where moles of added EDTA equals moles of metal $M^{n+}?^{\ 13}$

14] For Ag⁺ in the presence of NH₃, log β_1 = 3.31 and log β_2 = 7.23. The fraction of free Ag⁺ in solution can be calculated from: ¹⁴

a) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3] + \beta_2[NH_3]^2\}$ b) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3] + \beta_2[NH_3]\}$ c) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3]^2 + \beta_2[NH_3]\}$ d) $\alpha_{Ag+} = 1 / \{1 + \beta_1 + \beta_2\}$ e) $\alpha_{Ag+} = \{1 + \beta_1[NH_3] + \beta_2[NH_3]^2\}$

15] Calculate the concentration of free Ca²⁺ when $[Y^{4-}] = 4.5e-3$ M, and $[CaY^{2-}] = 9.0e-3$, at pH 10. K_f' = 1.8e10. ¹⁵

16] Given that $K_f' = 1.00e+10$ for a complex AY²⁻ where (A = metal ion) at 0.010 M what is the concentration of free metal as pA? ¹⁶

17] Given $K_f' = 1.4e10$ for CaY²⁻, what is pCa when 10.00 mL of 2.00e-3 M of Ca²⁺ is added to 10.00 mL of 2.00e-3 M EDTA? ¹⁷

18] A solution of 50.0-mL of 1.00×10^{-3} M NiCl₂(aq)is titrated with 1.00×10^{-3} M EDTA in a solution of 0.100 M NH₃ at pH 11.00. What is pNi if 25.0-mL of the titrant solution is added? Note that $\alpha_{Ni2+} = 1.34 \times 10^{-4}$ at 0.100 M NH₃. ¹⁸

19] What is K_{f} " for the NiEDTA²⁻ complex in 0.100 NH₃ at pH 11? ¹⁹

20] a] What is [NiEDTA²⁻] if 75.0-mL of titrant is added to the NiCl₂ solution in the above problem?

b] Which is true if 75.0-mL of 1.00×10^{-3} M EDTA titrant is added to the 50.0-mL of 1.00×10^{-3} M NiCl₂ solution in 0.1M NH₃? Assume equilibrium conditions. ²⁰

a) [Ni²⁺] = [EDTA]
b) [NiEDTA²⁻] > [EDTA]
c) [NiEDTA²⁻] = [EDTA]
d) [Ni²⁺] > [EDTA]

21] Given that $\beta_1 = 17$ for Ca(NH₃)²⁺, calculate pCa. Assume that [NH₃] = 0.100 M and [Ca(NH₃)²⁺] = 1.00e-3 M at pH 10.00. ²¹

22] A] Calculate the concentration of free Mg²⁺ in a solution of 50.0 mL of 0.0500 M Mg²⁺ when 5.00 mL of 0.0500 M EDTA is added at pH 10.00. 22

 $Mg^{2+} + EDTA = MgY^{2-}$ $K_{f}' = \alpha_{y4-}K_{f} = 0.36*6.2e8 = 2.2e8$

B] When 50.0 mL of 0.0500 M EDTA is added.

C] When 51.00 of 0.0500 M EDTA is added.

23] Calculate pCa if 20.0 mL of 0.050 M of EDTA is added to 15.0 mL of 0.050 M Ca $^{2+}$ at pH 9.0. $^{\rm 23}$

24] Calculate pCu for the titration curve for 50.00 mL of 0.0200 F Cu²⁺ at pH 5.00 when 0, 10.00, 25.00, 30.00 mL of 0.0400 M EDTA solution are added to the titration mixture. ²⁴

25] Calculate the conditional formation constant of $Fe^{III}(Y)^{-}$ (where Y = EDTA) in presence of 0.0100 M NaOOCH₃ at pH 7.00, if C_{Fe3+} = 1.00e-4 M, and [EDTA] = 1.50e-4 M.²⁵

26] a] Calculate the concentration of free Ag⁺ for 0.010 F Ag⁺ in 0.10 M NH₃. b] Calculate pAg when a 50.00-mL of 0.010 M(or F) Ag⁺ is mixed with 75.00-mL of 0.010 M EDTA at pH 10.00 in 0.10 M NH₃. ²⁶

27] 50 mL of 0.010 M Zn²⁺ is titrated with 0.010 M EDTA in 0.010 M NH $_3$ at pH 9.00. 27

A] calculate K_f".

B] Calculate the pZn when 50.0 mL of 0.0100 M Zn^{2+} is added to 25.0 mL of 0.0100 M EDTA in 0.010 M NH₃ at pH 9.00.

C] Calculate the pZn when 50.0 mL of 0.0100 M Zn²⁺ is added to 50.0 mL of 0.0100 M EDTA in 0.010 M NH₃ at pH 9.00.

D] Calculate the pZn when 50.0 mL of 0.0100 M Zn²⁺ is added to 75.0 mL of 0.0100 M EDTA in 0.010 M NH₃ at pH 9.00.

Answers

¹ 3.7e-7

² The fraction of EDTA in the Y⁴⁻ form.

³ B

⁴ $K_f' = \alpha_{y4}K_f$

⁵ basic pH's to maximize Y⁴⁻ fraction

 6 K_f' = α_{y4} -K_f = 0.85*5.4e8 = 4.6e8

⁷ [**Y**⁴⁻] = 3.8e-9*1.00e-3 M = 3.8e-12 M

¹⁰
$$\alpha_m = \frac{1}{1+\beta[L]}$$

¹¹
$$K_f = [FeY^-] / [Fe^{3+}][Y^{4-}]$$
 [Y⁴⁻] = $\alpha_{y4-}[EDTA]$
 $K_f = [FeY^-] / [Fe^{3+}]\alpha_{y4-}[EDTA]$
 $K_f' = \alpha_{y4-}K_f = [FeY^-] / [Fe^{3+}][EDTA]$
 $Fe^{3+} + EDTA = FeY^ K_f' = \alpha_{y4-}K_f$
At pH 4.00 $K_f' = \alpha_{y4-}K_f = 3.8e-9 * 1.3e25 = 4.9e16$

At pH 1.00 K_f' = 1.9e-18 * 1.3e25 = 2.5e7

 $1.00e+10 = 0.010 - x / x^2 \cong 0.010 / x^2$ x = 1.00e-6 **pA = 6.00**

¹⁷ This is the equi. pt. [CaY²⁻] = 1.00e-3 M

$$CaY^{2-} =$$
 $Ca2+$ + EDTA1.00e-3M00 $-x$ $+x$ $+x$ 1.00e-3-xxxKf' = 1.4e10 = 1.00-3 / x²x = 2.67e-7pCa =

¹⁸ Initial mol Ni²⁺ = 50.0-mL*1.00e-3 M = 0.0500 mmol

Added mol EDTA

= 25.0-mL*1.00e-3 M

= 0.0250 mmol

Excess Ni²⁺ = 0.0500 – 0.0250 mmol = 0.0250 mmol

C_{Ni2+} = 0.0250 mmol / 75.0-mL

= 3.33e-4 M

Free $[Ni^{2+}] = \alpha_{Ni2+} C_{Ni2+} = 1.34e-4*3.33e-4 = 4.47e-8 M$

pNi = 7.350

6.57

¹⁹ K_f'' = $\alpha_{Ni2+}\alpha_{Y4-}$ *K_f = 1.34e-4*0.85*10^{18.62} = **4.7e14**

²⁰ Initial mol Ni²⁺ = 50.0-mL*1.00e-3 M = 0.0500 mmol

Added mol EDTA = 75.0-mL*1.00e-3 M = 0.0750 mmol

[NiEDTA] = 0.0500 mmol / 125.0-mL = 4.00e-4 M

Excess EDTA = 0.0250 mmol / 125.0-mL = 2.00e-4 M

 $K_{f}'' = [NiEDTA]/C_{Ni}*[EDTA] = 4.00e-4/C_{Ni}*2.00e-4 = 4.7e14$ $C_{Ni} = 4.3e-15$ $[Ni^{2+}] = 1.34e-4*4.3e-14 = 5.8e-18 M$ pNi = 17.24

Therefore [NiEDTA²⁻] > [EDTA]

²¹ Need
$$\alpha_{Ca2+} = 1 / (1 + \beta_1[NH_3])$$
 from there: $[Ca^{2+}] = \alpha_{Ca2+} 1.00e-3 M$,
 $\alpha_{Ca2+} = 1 / (1 + \beta_1[NH_3]) = 1 / (1 + 17(0.100)) = 0.37$
 $[Ca^{2+}] = \alpha_{Ca2+} 1.00e-3 M = 0.37e-3 M$ pCa = 3.43

²² A] Initial Mg²⁺ = 0.0500 M * 50.0 mL = 2.50 mmol

Added EDTA = 0.0500 * 5.00 mL = 0.25 mmol

Mg ²⁺ +	EDTA =	MgY ²⁻
2.50	0.25	0
-0.25	-0.25	+0.25
2.25	0	0.25

[Mg²⁺] = 2.25 mmol / 55.00 mL = 0.0409pMg = 1.39

B] added EDTA = 0.0500 M * 50.0 mL = 2.50 mmol

Mg ²⁺ +	EDTA =	=	MgY ²⁻
2.50	2.50		0
-2.50	-2.50		+2.50
0	0		2.50

 $[Mg^{2+}] = 2.50 \text{ mmol} / 100 \text{ mL} = 0.0250 \text{ M}$ $Mg^{2+} + EDTA = MgY^{2-}$ $0 \quad 0 \qquad 0.0250$ +x +x -x

0.0250-x / x² = 2.2e8

x = 1.07e-5 pMg = 4.97

C] added EDTA = 0.0500 M * 51.0 mL = 2.55 mmol $Mg^{2+} + EDTA = MgY^{2-}$ 2.50 2.55 0 -2.50 - 2.50 + 2.500 0.05 2.50 $[MgY^{2-}] = 2.50 \text{ mmol} / 101 \text{ mL} = 2.47e-2 \text{ M}$ [EDTA] = 0.05 mmol / 101 mL = 4.95e-4 $K_{f}' = [MgY^{2-}] / [Mg^{2+}][EDTA] = 2.47e-2 \text{ M} / [Mg^{2+}]*4.95e-4$ $K_{f}' = 2.2e8$ $[Mg^{2+}] = 2.3e-7$

pMg = 6.64

²³ mol EDTA = 20.0 mL * 0.050 M = 1.0 mmol mol Ca²⁺ = 15.0 mL * 0.050 M = 0.75 mmol excess EDTA region where, $[CaY^{2-}] = 0.75$ mmol / 35.0 mL = 2.1e-2 M [EDTA] = 0.25 mmol / 35.0 mL = 7.1e-3 M K_f = $[CaY^{2-}] / [Ca^{2+}]*[Y^{4-}]$ $[Y^{4-}] = \alpha_{Y4-} [EDTA]$ K_f * $\alpha_{Y4-} = K_{f}' = [CaY^{2-}] / [Ca^{2+}]*[EDTA]$ K_f = 4.9e10 K_f' = 5.4e-2*4.9e10 = 2.6e9 2.6e9 = 2.1e-2 M / $[Ca^{2+}]*7.1e-3$ M $[Ca^{2+}] = 1.1e-9$ M

pCa = 8.94

²⁴ At 0.00 [Cu²⁺] = 0.020 M pCu = 1.70

At 10.00 mL

Initial mols Cu²⁺ = 0.0200 M * 50.00 mL = 1.00 mmols

Added mols EDTA = 0.040 M * 10.00 mL = 0.40 mmols

Excess $Cu^{2+} = 1.00 \text{ mmol} - 0.40 \text{ mmol} = 0.60 \text{ mmol}$

 $[Cu^{2+}]_{free} = 0.60 \text{ mmol} / 60.00 \text{ mL} = 0.010 \text{ M}$

pCu = 2.00

At 25.00 mL

Initial mols $Cu^{2+} = 1.00$ mmols

Added mols EDTA = 0.040 M * 25.00 mL = 1.0 mmols

This is the equivalence point therefore the formal concentration of CuEDTA is

[CuEDTA] = 1.0 mmols / 75.00 mL = 1.3e-2 M

Now Calculate free Cu²⁺:

 $Cu^{2+} + EDTA \rightleftharpoons CuEDTA$

+x +x 1.3e-2 –x

 $K_{f} = 6.3e18$

@ pH 5.00

α_{Y4-} = 3.7e-7

 $K_{f}' = \alpha_{Y4} K_{f} = 3.7e - 7 * 6.3e = 2.33e = 2.$

 $1.3e-2 - x / x^2 = 2.33e12$

 $1.3e-2 / x^2 \cong 2.33e12$

x = 7.5e-8

pCu = 7.12

At 30.00 mL

Initial mols $Cu^{2+} = 1.00$ mmols

Added mols EDTA = 0.0400 M * 30.00 mL = 1.20 mmols

Excess EDTA = 1.20 – 1.00 mmol = 0.20 mmol

[EDTA]_{excess} = 0.20 mmol / 80.00 mL = 2.5e-3

We now have the following equilibrium to consider:

 $Cu^{2+} + EDTA \quad \rightleftharpoons CuEDTA$

+x 2.5e-3+x 1.3e-2 –x

(1.3e-2 - x) / (2.5e-3+x) x = 2.33e12

 $(1.3e-2) / (2.5e-3) x \cong 2.33e12$ x = 2.2e-12

pCu = 11.65

$$\begin{split} ^{25} & \text{K}_{\text{f}}(\text{Fe}^{\text{III}}(\text{OOCH}_3)^{2^+}) = 10^{3.38} = 2.39\underline{8}\text{e3} \\ & \text{K}_{\text{f}}(\text{Fe}^{\text{III}}(\text{OOCH}_3)_2^+) = 10^{7.1} = 1.2\underline{6}\text{e7} \\ & \text{K}_{\text{f}}(\text{Fe}^{\text{III}}(\text{OOCH}_3)_3) = 10^{9.7} = 5.0\underline{1}\text{e9} \\ & \alpha_{\text{Fe}3^+} = 1 / \{1 + \beta_1[\text{CH}_3\text{OO}^-] + \beta_2[\text{CH}_3\text{OO}^-]^2 + \beta_3[\text{CH}_3\text{OO}^-]^3\} \\ & = 1 / \{1 + 2.39\underline{8}\text{e3} \ [0.0100] + 1.2\underline{6}\text{e7} \ [0.0100]^2 + 5.0\underline{1}\text{e9} \ [0.0100]^3\} \\ & = 1 / \{1 + 2.39\underline{8}\text{e3} \ [0.0100] + 1.2\underline{6}\text{e7} \ [0.0100]^2 + 5.0\underline{1}\text{e9} \ [0.0100]^3\} \\ & = 1 / \{1 + 2.39\underline{8} + 1.2\underline{6}\text{e3} + 5.0\underline{1}\text{e3}\} \\ & = 1 / \{0.2\underline{7}\text{e3} \\ & = 1.5\underline{9}\text{e}\text{-4} \\ & \alpha_{\text{y4}} \cdot \textcircled{e} \text{ pH } 7.00 = 5.0\text{e}\text{-4} \ (\text{Table } 13\text{-}1) \\ & \text{K}_{\text{f}} = 10^{25.1} = 1.\underline{3}\text{e25} \ (\text{Table } 13\text{-}2) \end{split}$$

²⁶ <u>a] See Appendix</u> $\beta_1 = 10^{3.31} = 2.04e3$ $\beta_2 = 10^{7.23} = 1.70e7$

 $\alpha_{Ag+} = 1/(1 + \beta_1[NH_3] + \beta_2[NH_3]^2) = 1/(1 + 2.04e3^*0.100 + 1.70e7^*0.100^2) = 5.88e-6$

 $[Ag^+] = \alpha_{Ag^+}C_{Ag^+} = 5.88e-6*0.010 M = 5.88e-8 M$

b] $K_{f}'' = K_{f} \alpha_{Ag+} \alpha_{Y4-} = 10^{7.32*} 5.88e-6*0.36 = 44.2$

Initial mol Ag⁺ = 50.00-mL*0.010 M = 0.500 mmol

Added mol EDTA = 75.00-mL*0.010 M = 0.750 mmol

All Ag⁺ is complexed with EDTA with leftover EDTA

[AgY³⁻] = 0.500 mmol / 125.00-mL = 4.00e-3 M

[EDTA]_{free} = 0.250 mmol / 125.00-mL = 2.00e-3 M

 $K_{f}'' = [AgY^{3-}] / C_{Ag+} [EDTA]$

44.2 = 4.00e-3 M / C_{Ag+} 2.00e-3 M

 $C_{Ag+} = 4,52e-2$

[Ag⁺] = α_{Ag+}C_{Ag+} = 5.88e-6 * 4.52e-2 M = 2.66e-7 M

pAg = 6.575

²⁷ A] Appendix I in your text has

$\log \beta_1$ = 2.18	$\beta_1 = 151$			
$\log \beta_2 = 4.43$	$\beta_2 = 2.69e4$			
$\log \beta_3 = 6.74$	$\beta_3 = 5.50e6$			
$\log \beta_4 = 8.70$	eta_4 = 5.01e8			
$\alpha_{M} = 1 / \{1 + \beta_{1}[L] + \beta_{2}[L]^{2} + \dots + \beta_{n}[L]^{n} \}$				
$\alpha_{Zn2+} = 1 / \{1 + 151[0.010] + 2.69e4[0.010]^2 + 5.50e6[0.010]^3 + 5.01e8[0.010]^4 \}$				
$\alpha_{Zn2+} = 1 / \{1 + 1.51 + 2.69 + 550.0 + 5010.0\}$				
= 1.79e-4				

K_f = 3.2e16 Table 13-2

 $\alpha_{v4-} = 5.4e-2$ Table 13-1

 $K_{f}'' = K_{f} \alpha_{Zn2+} \alpha_{y4-} = 3.2e16 * 5.4e-2* 1.79e-4 = 3.1e11$

B] Initial Zn²⁺ = 50.0 mL * 0.0100 M = 0.500 mmol

Added EDTA = 25.0 mL * 0.0100 M = 0.250 mmol

 $Excess Zn^{2+} = 0.500 - 0.250 = 0.250 mmol$

 $C_{zn2+} = 0.250 \text{ mmol} / 75.0 \text{ mL} = 3.33e-3 \text{ M}$

$$[Zn^{2+}] = \alpha_{Zn2+} C_{Zn2+} = 1.79e-4 * 3.33e-3 M$$

pZn = 6.225

C] Initial $Zn^{2+} = 50.0 \text{ mL} * 0.0100 \text{ M} = 0.500 \text{ mmol}$

```
Added EDTA = 50.0 mL * 0.0100 M = 0.500 mmol

Initial Zn^{2+} = Added EDTA :: eq. pt.

Initial [ZnY^{2-}] = 0.500 mmol / 100.0 mL = 5.00e-3 M

ZnY^{2-} = C_{Zn2+} + EDTA

5.00e-3 	 0 	 0

-x 	 +x 	 +x 	 +x

Kf'' = 3.1e11 = (5.00e-3 - x) / x^2

x = C_{Zn2+}

x = 1.27e-7 M

[Zn^{2+}] = \alpha_{Zn2+} C_{Zn2+} = 1.79e-4 * 1.27e-7 M

[Zn^{2+}] = 2.27e-11 M
```

D] Initial $Zn^{2+} = 50.0 \text{ mL} * 0.0100 \text{ M} = 0.500 \text{ mmol}$

Added EDTA = 75.0 mL * 0.0100 M = 0.750 mmol Excess EDTA = 0.250 mmol

 $[ZnY^{2-}] = 0.500 \text{ mmol} / 125.0 \text{ mL} = 4.00e-3$

[EDTA] = 0.250 mmol / 125.0 mL = 2.00e-3 M $K_{f}'' = 3.1e11 = [ZnY^{2-}] / C_{zn2+}*[EDTA]$ $3.1e11 = 4.00e-3 / C_{zn2+}* 2.00e-3$ $C_{zn2+} = 6.45e-12$ $[Zn^{2+}] = \alpha_{Zn2+} C_{Zn2+} = 1.79e-4 * 6.45e-12M = 1.15e-15$

pZn = 14.94