6 – Electrochemistry

1] A spontaneous electrochemical cell would have which of the following?¹

- a) $E_{cell} = 0$
- b) $E_{cell} > 0$
- c) $E_{cell} < 0$
- d) $E_{cell} \leq 0$
- e) $E_{cell} \ge 0$

2] The purpose of a reference electrode is to _____ ²

3] Which of the following species is the strongest reducing agent?³

 $A + e^{-} = A^{-}$ $E^{0} = 0.500$ Volts $A^{-} + e^{-} = A^{2-}$ $E^{0} = 0.000$ volts $A^{2-} + e^{-} = A^{3-}$ $E^{0} = -0.500$ volts

4] What is E^0 for the following half reaction if E^0 for ⁴

 $Zn^{2+} + 2e^{-} = Zn(s)$ is -0.762 V? $\frac{1}{2}Zn^{2+} + e^{-} = \frac{1}{2}Zn(s)$

5] What is E⁰_{cell} for the following reaction? ⁵

 $2Na(s) + 2H^+ = 2Na^+ + H_2(g)$ $Na^+ + e^- = Na(s)$ $E^0 = -2.7143 V$ $2H^+ + 2e^- = H_2(g)$ $E^0 = 0.0000 V$

6] If A + e^{-} = B has E^{0} = 0.775 V then the E^{0} for 2A + 2 e^{-} = 2B is . ⁶

7] The reductions take place at which electrode?⁷

8] The standard cell potential for the following is ⁸

 $\begin{aligned} & Fe(s)/Fe^{2+}(aq)//Sn^{2+}(aq)/Sn(s) \\ & Fe^{2+}+2e^-=Fe(s) \\ & Sn^{2+}+2e^-=Sn(s) \\ & E^0=-0.141 \ V \end{aligned}$

9] The E^0 for the following is ⁹

 $FeCO_3(s) + 2e^- = Fe(s) + CO_3^{2-}$ $E^0 = ?$ $Fe^{2+} + 2e^- = Fe(s)$ $E^0 = -0.44 V$ $K_{sp} \{FeCO_3(s)\} = 2.1e-11$

10] What is E_{cell}^0 for the reaction below ¹⁰

$$\begin{split} F_2 + 2Fe^{2+} &= 2F^- + 2Fe^{3+} \\ F_2 + 2e^- &= 2F^- & E^0_{red} &= 2.890 \text{ V} \\ Fe^{3+} + e^- &= Fe^{2+} & E^0_{red} &= 0.771 \text{ V} \end{split}$$

11] What is E^{0}_{cell} for the reaction below? ¹¹ Hg₂SO₄(s) + 2e- = 2Hg(l) + SO₄²⁻ Hg₂²⁺ + 2e⁻ = 2Hg(l) E^{0}_{red} = 0.796 V Hg₂SO₄(s) = Hg₂²⁺ + SO₄²⁻ K_{sp} = 7.4e-7

12] What is the half reaction reduction potential for 1.00e-5 M H⁺? 12

13] Which of the following species is the strongest reducing agent?¹³

A+ + e- = A	E ⁰ = 0.75 V
B + e- = B ⁻	$E^0 = 0.25 V$
$D^{2+} + e^- = D^+$	E ⁰ = -0.50 V

14] Calculate the standard state cell potential for the following. ¹⁴ $Cu(s)/Cu^{2+}(aq)//K^{+}(aq)/K(s)$

15] What is the standard state reduction potential for the following reaction? ¹⁵

 $AgBr(s) + e^{-} = Ag(s) + Br^{-}$ $Ag^{+} + e^{-} = Ag(s)$ $E^{0} = 0.799 V$ $AgBr(s) = Ag^{+} + Br^{-}$ $K_{sp} = 5.0e-13$

16] Calculate E_{cell} and K for this reaction. Pt/Cr³⁺(2.00e-4M), Cr²⁺(1.00e-3M)//Pb²⁺(6.50e-2M)/Pb. ¹⁶

17] What is E for the following if Cl⁻ concentration is 0.50 M? ¹⁷ AgCl(s) + $e^- = Ag(s) + Cl^ E^0 = 0.222 V$

18] Calculate E^0 for ¹⁸ Ni(CN)₄⁻(aq) + 2e⁻ = Ni(s) + 4 CN⁻ Given Ni²⁺ + 2e⁻ = Ni(s) E^0 = -0.250 V β {Ni(CN)₄⁻} = 1.0e22

19] What is the Ksp of AgCl given: ¹⁹

 $Ag^+ + e^- = Ag(s)$ $E^0 = 0.799 V$ $AgCl(s) + e^- = Ag(s) + Cl^ E^0 = 0.222 V$ Note that 2.303RT/nF = 0.0592 V.

20] Calculate E_{cell} for Cd(s)/[CdCl₂](aq) = 1.0 M//[AgNO₃](aq) = 1.0 M/Ag(s) ²⁰

a] 1.201 V b] -1.201 V c] 0.566 V d] 0.997 V e] -0.566 V

21] Calculate the standard potential for the following half-reaction, given the K_{sp} for Pd(OH)₂ is 3.0 x 10⁻²⁸ and the standard potential for Pd²⁺ + 2e⁻ = Pd(s) is 0.915 V.²¹

 $Pd(OH)_2(s) + 2e^- = Pd(s) + 2OH$

22] Explain what E^{0} is and why is it preferred over E^{0} in biochemistry? ²²

23] Calculate $E^{0'}$ for $H_2C_2O_4 + 2H^+ + 2e^- = 2HCO_2H$ $E^0 = 0.204 V^{23}$

Answers

1 b

 2 To provide a stable potential in which the electrode reaction can be compared to 2H*(aq) + 2e- = H_2(g) E^0 = 0.00 V

³ A³⁻

4 -0.762 V

⁵ E⁰_{cell} = 0.0000 – (-2.7143) V

⁶ 0.775 V

⁷ Cathode

⁸ E = -0.141 –(-0.44) = 0.30 V

 9 E = -0.44 – (0.0592/2) log 1/K_{sp} = -0.756 V

¹⁰ Ecell = Ecath – Eanod = 2.890 – 0.771 = **2.119 V**

¹¹ E = $0.796 - 0.0592/2 \log 1/[Hg_2^{2+}]$

 $K_{sp} = 7.4e-7 = [Hg_2^{2+}][SO_4^{2-}]$

 $[Hg_2^{2+}] = 7.4e-7/[SO_4^{2-}]$

E = 0.796 – 0.0592/2 log [SO₄²⁻]/7.4e-7 = **0.615 V**

 12 E = E⁰ – 0.0592 log 1/[H⁺] = 0.0000 – 0.0592 log 1/[1.00e-5] = -0.296 V

¹³ D+

 14 E_{cell} = E_{cath} – E_{anod} = -2.936 – 0.339 = -3.275 V Use your book's table of standard reduction potentials.

¹⁵ E = E⁰(Ag⁺/Ag) – 0.0592 log 1/[Ag⁺]
Realize that
$$K_{sp} = [Ag^+] [Br^-]$$

 $[Ag^+] = K_{sp} / [Br^-]$ sub into Nernst Eqn above
 $E = E^0(Ag^+/Ag) - 0.0592 \log [Br^-]/K_{sp} let [Br^-] = 1$ for standard state conditions
 $E^0 = 0.799 - 0.0592 \log 1/5.00e-13 = 0.0708 V$

¹⁶ Pt/Cr³⁺(2.00e-4M), Cr²⁺(1.00e-3M)//Pb²⁺(6.50e-2M)/Pb

$$E_{cath} = -0.126 - (0.0592/2) \log 1/6.5e-2 = -0.161 V$$

 $E_{anod} = -0.408 - 0.0592 \log (1.00e-3/2.00e-4) = -0.449 V$

 $E_{cell} = -0.161 - (-0.449) = 0.288 V$

 $E^{0}_{cell} = -0.126 - (-0.408) = 0.282$

 $\Delta G^0 = -nFE^0 = -2*96484*0.282 = -5.44e4 J$

 ΔG^0 = -RT lnK

 $\ln K = -\Delta G^0 / RT = -(-5.44e4 J) / 8.314 * 298K$

K = 3.43e9

 17 E = E⁰ - 0.0592 log [Cl⁻] = 0.222 - 0.0592 log (0.50) = 0.240 V

¹⁸ E = $-0.250 - (0.0592/2) \log 1/[Ni^{2+}]$

 $\beta \{Ni(CN)_4^-\} = 1.0e22 = [Ni(CN)_4^-] / [Ni^{2+}][CN^-]^4$

 $[CN^{-}]^{4}1.0e22/[Ni(CN)_{4}^{-}] = 1/[Ni^{2+}]$

 $E = -0.250 - (0.0592/2) \log \{ [CN^{-}]^{4} 1.0e22 / [Ni(CN)_{4}^{-}] \}$

 $E^0 = -0.250 - (0.0592/2) \log 1.0e22$

 $E^0 = -0.90 V$

¹⁹ rxn: AgCl(s) = Ag⁺ + Cl⁻ add the following

 $Ag(s) = Ag^{+} + e^{-}$ $E^{0} = 0.799 V$

 $AgCl(s) + e - = Ag(s) + Cl^{-}$ $E^{0} = 0.222 V$

E_{cell} = 0.222 – 0.799 V = -0.577 V

 $\Delta G = -RT \ln Ksp = -nFE$

Ksp = 10^(-0.577/0.0592) = 1.79e-10

²⁰ Anode: Cd = Cd²⁺ + 2e- E^0 = -0.402 V

Cathode $Ag^+ + e^- = Ag(s)$ $E^0 = 0.799 V$

All at 1M concentration

 $E_{cell} = E_{cell}^{0} = E_{cath} - E_{anod} = 0.799 - (-0.402) V = 1.201 V$

²¹ E = $E^{0}_{Pd2+/Pd}$ - (0.0592 / 2) log 1 / [Pd²⁺] K_{sp} = 3.0 x 10⁻²⁸ = [Pd²⁺][OH⁻]² [Pd²⁺] = 3.0 x 10⁻²⁸ / [OH⁻]² Standard potential conditions [OH⁻] = 1.0 M [Pd²⁺] = 3.0 x 10⁻²⁸ E = $E^{0}_{Pd2+/Pd}$ - (0.0592 / 2) log 1 / 3.0 x 10⁻²⁸ E = 0.915 V - (0.0592 / 2) log 1 / 3.0 x 10⁻²⁸

 $E^{0}_{Pd(OH-)2/Pd} = -0.100 V$

 $^{22}\,\text{E}^{0\prime}$ is the conditional from of E^0 where it is assumed that the pH is 7 rather than 0. See discussion in text

 23 H₂C₂O₄ is oxalic acid and HCO₂H is formic acid.

$$E = E^{0} - \frac{0.0592}{n} \log Q$$
$$E = 0.204 - \frac{0.0592}{2} \log \frac{[HCO_{2}H]^{2}}{[H^{+}]^{2}[H_{2}C_{2}O_{4}]}$$

#1 assume pH 7 and all else 1 M

First method is an approximation:

$$E^{0} = 0.204 - \frac{0.0592}{2} \log \frac{1}{[10^{-7}]^2} = -0.210V$$

We must consider that the $[HCO_2H]$ and the $[H_2C_2O_4]$ are involved in hydrolysis reactions. The relative concentrations of each are described as:

$$\alpha_{HCO_{2}H} = \frac{[HCO_{2}H]}{F_{HCO_{2}H}} = \frac{[H^{+}]}{K_{a} + [H^{+}]} \qquad [HCO_{2}H] = \frac{[H^{+}]F_{HCO_{2}H}}{K_{a} + [H^{+}]}$$
$$[H_{2}C_{2}O_{4}] = \frac{[H^{+}]^{2}F_{H_{2}C_{2}O_{4}}}{K_{a1}K_{a2} + K_{a1}[H^{+}] + [H^{+}]^{2}}$$

#1 now becomes

$$E = 0.204 - \frac{0.0592}{2} \log \frac{\left(\frac{[H^+]F_{HCO_2H}}{K_a + [H^+]}\right)^2}{[H^+]^2 \left(\frac{[H^+]^2 F_{H_2C_2O_4}}{K_{a1}K_{a2} + K_{a1}[H^+] + [H^+]^2}\right)}$$

 $[H^+]$ = 1e7 exact, K_a = 1.80e-4, K_{a1} = 5.60e-2, K_{a2} = 5.42e-5, F = 1 M exact

E⁰' = -0.268 V