7 - Potentiometry and Redox Titrations
1] ApH electrode responded with a potential of -433 mV in a solution of 0.0500 M KHP at pH 4.01
 potassium hydrogen phthalate.

The electrode is rinsed and placed in an unknown solution and responds with a potential of 692 mV . What is the pH of this unknown? ${ }^{1}$

2] The response of a F^{-}selective electrode was found to be 0.355 V in standardize $1.00 \mathrm{e}-3 \mathrm{M}$ solution. The response of this electrode in an unknown solution of F^{-}is 0.407 V . What is [F^{-}] for that unknown solution? ${ }^{2}$

3] The linear pH range for the average pH electrode is about: ${ }^{3}$
a) 0 to 14
b) -5 to 18
c) 2 to 10
d) 1 to 14
e) -10 to 10

4] A very common interference for the glass pH electrode is \qquad .${ }^{4}$

5] A glass pH electrode was found to have a potential of -0.0412 V when used with a buffer of pH 6.00. An unknown solution was found to have a potential of -0.2004 V . What is the pH of this unknown solution? ${ }^{5}$

6] A pH electrode responded with a voltage of 0.227 V in a standardized pH 7.000 solution. What is the pH of an unknown if that pH electrode responds with a voltage of 0.363 V ? ${ }^{6}$

7] $\mathrm{A} \mathrm{Mg}^{2+}$ ISE was found to have a potential of 0.3674 V when in contact with a solution of $6.87 \mathrm{e}-3 \mathrm{M}$. That same electrode was to have a potential of 0.4464 V in contact with an unknown solution of Mg^{2+}. What is the concentration of Mg^{2+} in that unknown? ${ }^{7}$

8] What is $\left[\mathrm{Cl}^{-}\right]$if the measured potential of the following cell is 0.321 V ? ${ }^{8}$

$$
\mathrm{Pt}(\mathrm{~s}) / 1 \mathrm{M} \mathrm{HCl}(\mathrm{aq}), 1.0 \text { atm } \mathrm{H}_{2} / / \mathrm{KCl}(\mathrm{aq}) / \mathrm{AgCl}(\mathrm{~s}) / \mathrm{Ag}(\mathrm{~s})
$$

$$
\mathrm{AgCl}+\mathrm{e}^{-}=\mathrm{Ag}+\mathrm{Cl}^{-} \quad \mathrm{E}^{0}=0.222 \mathrm{~V}
$$

9] The potential of an F^{-}ISE and calomel electrode was -0.1823 V for a 25.0 mL of sample. Addition of 5.00 mL of standard solution containing $5.63 \times 10^{-5} \mathrm{M} \mathrm{F}$ - caused the combination electrode to change to -0.2446 V . What is the concentration of F^{-}in that sample? ${ }^{9}$

10] ApH electrode was found to have a potential of 0.241 V in a pH 4.01 buffer solution. A sample solution was found to have a potential of 0.252 V . What is the pH of that sample? ${ }^{10}$

11] A 20.00 mL solution of 0.1004 M KI was titrated with $0.0845 \mathrm{M} \mathrm{AgNO}_{3}$.
a) Calculate the cell voltage when $\mathrm{V}_{\mathrm{Ag}^{+}}=15.00 \mathrm{~mL}$. Assume an SHE cathode and a $\mathrm{Ag} / \mathrm{Ag} \mid$ indicator electrode.
b) $\mathrm{E}_{\text {cell }}$ when $\mathrm{V}_{\text {Ag }+}=23.76$
c) $E_{\text {cell }}$ when $V_{\mathrm{Ag}^{+}}=25.00 \mathrm{~mL} \quad 11$
$\mathrm{Ag}^{+}+\mathrm{e}-\mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}^{0}=0.799 \mathrm{~V} \quad \mathrm{Ksp}(\mathrm{AgI})=8.3 \mathrm{e}-17$

12] KMnO_{4} can be standardized with which of the following? ${ }^{12}$
a) $\mathrm{H}_{2} \mathrm{O}_{2}$
b) CH_{4}
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{NaC}_{2} \mathrm{O}_{4}$
e) $\mathrm{C}_{2} \mathrm{H}_{4}$

13] Which is true of the equivalence point for the redox titration of Fe^{2+} with Ce^{4+} ? ${ }^{13}$
a) only $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}^{3+}\right]$
b) $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Ce}^{3+}\right]$ and $\left[\mathrm{Ce}^{4+}\right]=\left[\mathrm{Fe}^{3+}\right]$
c) $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Ce}^{4+}\right]$ and $\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Ce}^{3+}\right]$
d) $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}^{3+}\right]$ and $\left[\mathrm{Ce}^{4+}\right]=\left[\mathrm{Ce}^{3+}\right]$
e) $\left[\mathrm{Fe}^{2+}\right]=0$

14] What are the final concentrations of each ion when $25.0-\mathrm{mL}$ of $0.0500 \mathrm{M} \mathrm{Ce}^{4+}$ is mixed with $15.0-\mathrm{mL}$ of $0.0500 \mathrm{M} \mathrm{Cu}^{+}$?

$$
\begin{array}{ll}
\mathrm{Ce}^{4+}+\mathrm{e}=\mathrm{Ce}^{3+} & \mathrm{E}_{\text {red }}^{0}=1.44 \mathrm{~V} \\
\mathrm{Cu}^{2+}+\mathrm{e}=\mathrm{Cu}^{+} & \mathrm{E}_{\text {red }}^{0}=0.161 \mathrm{~V}
\end{array}
$$

What is the potential of the final solution when $25.0-\mathrm{mL}$ of $0.0500 \mathrm{M} \mathrm{Ce}^{4+}$ is mixed with $15.0-\mathrm{mL}$ of $0.0500 \mathrm{M} \mathrm{Cu}^{+}$? ${ }^{14}$

15] Calculate the cell potential when 25.0 mL of $0.010 \mathrm{M} \mathrm{Ce}^{4+}$ is added to 15.0 mL of 0.010 M $\mathrm{Fe}^{2+} .{ }^{15}$

$$
\begin{array}{ll}
\mathrm{Ce}^{4+}+\mathrm{e}^{-}=\mathrm{Ce}^{3+} & \mathrm{E}^{0}=1.70 \mathrm{~V} \\
\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} & \mathrm{E}^{0}=0.767 \mathrm{~V}
\end{array}
$$

16] Derive the titration curve for the titration of 50.00 mL of $0.0500 \mathrm{M} \mathrm{Fe}^{2+}$ with $0.100 \mathrm{M} \mathrm{Ce}^{4+}$ using these volumes of titrant: ${ }^{16}$

A] 5.00 mL of $0.100 \mathrm{M} \mathrm{Ce}^{4+}$
B] 25.00 mL
C] 25.10 mL

17] 18.00 mL of $0.125 \mathrm{M} \mathrm{Sn}^{4+}$ is titrated with $0.100 \mathrm{M} \mathrm{Ti}^{2+}$ in the following reaction:

$$
\mathrm{Sn}^{4+}+2 \mathrm{Ti}^{2+}=\mathrm{Sn}^{2+}+2 \mathrm{Ti}^{3+}
$$

What is the added volume of titrant required to reach the equivalence point?
Which of the following is true at the equivalence point? ${ }^{17}$
a) $\left[\mathrm{Sn}^{4+}\right]=\left[\mathrm{Ti}^{2+}\right] \&\left[\mathrm{Sn}^{2+}\right]=\left[\mathrm{Ti}^{3+}\right]$
b) $\left[\mathrm{Sn}^{4+}\right]=\left[\mathrm{Ti}^{2+}\right]=\left[\mathrm{Sn}^{2+}\right]=\left[\mathrm{Ti}^{3^{+}}\right]$
c) $4\left[\mathrm{Sn}^{4+}\right]=2\left[\mathrm{Ti}^{2+}\right] \& 2\left[\mathrm{Sn}^{2+}\right]=3\left[\mathrm{Ti}^{3+}\right]$
d) $2\left[\mathrm{Sn}^{4+}\right]=\left[\mathrm{Ti}^{2+}\right] \& 2\left[\mathrm{Sn}^{2+}\right]=\left[\mathrm{Ti}^{3+}\right]$
e) $\left[\mathrm{Sn}^{4+}\right]=2\left[\mathrm{Ti}^{2+}\right] \&\left[\mathrm{Sn}^{2+}\right]=2\left[\mathrm{Ti}^{3+}\right]$

18] Fe^{2+} was titrated with Ce^{4+}, what is potential of a Pt wire electrode immersed in this solution at the equivalence point? Assume the reference potential electrode to be $0.000 \mathrm{~V} .{ }^{18}$

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} & \mathrm{E}^{0}=0.767 \mathrm{~V} \\
\mathrm{Ce}^{4+}+\mathrm{e}^{-}=\mathrm{Ce}^{3+} & \mathrm{E}^{0}=1.70 \mathrm{~V}
\end{array}
$$

$\begin{array}{ll}{ }^{1} \mathrm{E}=\text { const }-0.0592 \mathrm{pH} & \text { must find const. } \\ -0.433 \mathrm{~V}=\text { const }-0.0592(4.01) & \text { const }=-0.196 \mathrm{~V}\end{array}$
Now find unkn pH

$$
\begin{aligned}
& -0.692=-0.196-0.0592 \mathrm{pH} \quad \mathrm{pH}=8.39 \\
& { }^{2} \mathrm{E}=\text { const }-0.0592 \log \left[\mathrm{~F}^{-}\right] \\
& 0.355=\text { const }-0.0592 \log [1.00 \mathrm{e}-3] \\
& \text { const }=0.177
\end{aligned}
$$

```
\(0.407=0.177-0.0592 \log \left[F^{-}\right]\)
\([\mathrm{F}]=1.30 \mathrm{e}-4 \mathrm{M}\)
```

${ }^{3} 2$ to 10
${ }^{4} \mathrm{Na}^{+}$
${ }^{5} \mathrm{E}=$ const $-0.0592 * \mathrm{pH} \quad-0.0412=$ const $-0.0592 * 6.00 \quad$ const $=0.314$
$-0.2004=0.314-0.0592 * \mathrm{pH} \quad \mathrm{pH}=8.69$
${ }^{6} \mathrm{E}=$ const. $-0.0592 \mathrm{pH} \quad 0.227=$ const. $-0.0592 * 7.000 \quad$ const. $=0.6414$
$0.363=0.6414-0.0592 \mathrm{pH} \quad \mathrm{pH}=4.702$
${ }^{7} \mathrm{E}=$ const $-0.0592 / 2$ * pMg $0.3674=$ const $-0.0592 / 2$ * $(-\log (6.87 \mathrm{e}-3))$
const $=0.431$
$0.4464=0.431-0.0592 / 2 * \mathrm{pMg} \quad\left[\mathrm{Mg}^{2+}\right]=3.31 \mathrm{M}$
${ }^{8}$ Ecell $=$ Ecath. - Eanod. $=0.197-0.000 \mathrm{~V} \quad$ Ecath. $=0.321=0.222-0.0592 \log \left[\mathrm{Cl}^{-}\right] \quad\left[\mathrm{Cl}^{-}\right]=$
0.0212 M

${ }^{9}$ start with	$E=$ int $-0.0592 \log \left[F^{-}\right] \operatorname{let} x=$ unk $\left[F^{-}\right]$
2 eqns:	$-0.1823=$ int $-0.0592 \log (x)$
	$-(-0.2446=$ int $-0.0592 \log (x(25.00 / 30.00)+5.63 e-5(5.00 / 30.00))$
	$6.23 e-2=0.0592 \log (0.833 x+9.38 e-6)-0.0592 \log (x)$
	$1.052=\log [(0.833 x+9.38 e-6) /(x)] \quad x=8.97 e-7 \mathrm{M}$

103.82
${ }^{11}$ a) $\mathrm{Rxn}: \quad \quad \mathrm{Ag}^{+}+\mathrm{I}^{-}=\mathrm{Agl}(\mathrm{s})$

$$
\begin{aligned}
& \text { Initial } \mathrm{I}-=20.00 \mathrm{~mL} * 0.1004 \mathrm{M}=2.008 \mathrm{mmol} \\
& \text { Added } \mathrm{Ag}^{+}=15.00 \mathrm{~mL}^{*} 0.0845 \mathrm{M}=1.27 \mathrm{mmol} \\
& \mathrm{Ag}^{+} \\
& + \\
& 1.27 \\
& \mathrm{I}^{-}= \\
& -1.27 \\
& 0
\end{aligned}
$$

$$
\left[\mathrm{l}^{-}\right]=0.740 \mathrm{mmol} / 35.00 \mathrm{~mL}=0.0211 \mathrm{M}
$$

$$
\mathrm{E}=\mathrm{E}^{0}-0.0592 \log 1 /\left[\mathrm{Ag}^{+}\right]
$$

$$
\mathrm{Ksp}=8.3 \mathrm{e}-17=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]
$$

$$
\left[\mathrm{Ag}^{+}\right]=8.3 \mathrm{e}-17 / 0.0211=3.9 \mathrm{e}-15 \mathrm{M}
$$

$$
E=0.799-0.0592 \log \{1 / 3.9 e-15\}=-0.0538 V
$$

b) added $\mathrm{Ag}^{+}=23.76 \mathrm{~mL} * 0.0845 \mathrm{M}=2.008 \mathrm{mmol}$

This is the eq. pt.

$\mathrm{Ag}^{+}+\mathrm{I}^{-}$	$=$	$\mathrm{Agl}(\mathrm{s})$
0	0	--
$+x$	$+x$	

$$
x^{2}=K_{s p}=8.3 e-17 \quad x=9.1 e-9
$$

$$
E=E^{0}-0.0592 \log 1 /\left[\mathrm{Ag}^{+}\right]
$$

$$
E=0.799-0.0592 \log \{1 / 9.1 \mathrm{e}-9\}=0.323 V
$$

c) we are beyond the eq. pt.
excess $\mathrm{Ag}^{+}=(25.00-23.76) \mathrm{mL} * 0.0845 \mathrm{M}=0.105 \mathrm{mmol}$
$\left[\mathrm{Ag}^{+}\right]=0.105 \mathrm{mmol} / 45.00 \mathrm{~mL}=2.33 \mathrm{e}-3 \mathrm{M}$
$E=0.799-0.0592 \log \{1 / 2.33 e-3\}=0.643 V$
${ }^{12} \mathrm{NaC}_{2} \mathrm{O}_{4}$
${ }^{13}\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Ce}^{4+}\right]$ and $\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Ce}^{3+}\right]$
${ }^{14}$ Reaction: $\mathrm{Ce}^{4+}+\mathrm{Cu}^{+}=\mathrm{Ce}^{3+}+\mathrm{Cu}^{2+}$
Initial $\mathrm{mol} \mathrm{Ce}^{4+}=25.0-\mathrm{mL}^{*} 0.0500 \mathrm{M}=1.25 \mathrm{mmol}$
Initial mol Cu ${ }^{+}=15.0-\mathrm{mL}^{*} 0.0500 \mathrm{M}=0.75 \mathrm{mmol}$

More Ce^{4+} than Cu^{+}therefore
$\mathrm{Mol} \mathrm{Ce}{ }^{3+}=0.75 \mathrm{mmol}$
$\left[\mathrm{Ce}^{3+}\right]=0.75 \mathrm{mmol} / 40.0-\mathrm{mL}=1.9 \mathrm{e}-2 \mathrm{M}$
$\mathrm{Mol} \mathrm{Ce}{ }^{4+}=0.50 \mathrm{mmol}$
$\left[\mathrm{Ce}^{4+}\right]=0.50 \mathrm{mmol} / 40.0-\mathrm{mL}=1.3 \mathrm{e}-2 \mathrm{M}$
$\mathrm{Mol} \mathrm{Cu}^{+}=0.00 \mathrm{mmol}$
$\left[\mathrm{Cu}^{+}\right]=0.00$
$\mathrm{Mol} \mathrm{Cu}^{2+}=0.75 \mathrm{mmol}$
$\left[\mathrm{Cu}^{2+}\right]=0.75 \mathrm{mmol} / 40.0-\mathrm{mL}=1.9 \mathrm{e}-2 \mathrm{M}$
$E=1.44-0.0592 \log 1.9 e-2 / 1.3 e-2=1.43 \mathrm{~V}$
${ }^{15} \mathrm{Mol} \mathrm{Ce}^{4+}=25.0 \mathrm{~mL} * 0.010 \mathrm{M}=0.25 \mathrm{mmol}$
$\mathrm{Mol} \mathrm{Fe}^{2+}=15.0 \mathrm{~mL} * 0.010 \mathrm{M}=0.15 \mathrm{mmol}$

Excess Ce^{4+} region
$\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}+\mathrm{Ce}^{3+}$
$\begin{array}{llll}0.25 & 0.15 & 0 & 0\end{array}$
$-0.15-0.15+0.15+0.15$
$\begin{array}{llll}0.10 & 0 & 0.15 & 0.15\end{array}$
$E=1.70-(0.0592) \log (0.15 / 0.10)=1.69 \mathrm{~V}$
$\left.{ }^{16} \mathrm{~A}\right] 5.00 \mathrm{~mL}$ of $0.100 \mathrm{M} \mathrm{Ce}^{4+}$
initial mol of $\mathrm{Fe}^{2+}=50.00 \mathrm{~mL} * 0.0500 \mathrm{M} \mathrm{Fe}^{2+}=2.50 \mathrm{mmol}$
added mol of $\mathrm{Ce}^{4+}=5.00 \mathrm{~mL}^{*} 0.100 \mathrm{M} \mathrm{Ce}^{4+}=0.500 \mathrm{mmol}$

$$
\begin{aligned}
& \mathrm{Fe}^{2+}+\mathrm{Ce}^{4+}=\mathrm{Ce}^{3+}+\mathrm{Fe}^{3+} \\
& 2.50 \quad 0.500 \\
& 0
\end{aligned}
$$

Both Fe^{2+} and Fe^{3+} are present this is a metal buffer.

$$
E=0.771-0.0592 \log \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]}=0.771-0.0592 \log \frac{\frac{2.00 \mathrm{mmol}}{55.00 \mathrm{~mL}}}{\frac{0.500}{55.00 \mathrm{~mL}}}
$$

$$
E=0.734 V
$$

B] initial mol of $\mathrm{Fe}^{2+}=50.00 \mathrm{~mL}^{*} 0.0500 \mathrm{M} \mathrm{Fe}^{2+}=2.50 \mathrm{mmol}$
added mol of $\mathrm{Ce}^{4+}=25.00 \mathrm{~mL}^{*} 0.100 \mathrm{M} \mathrm{Ce}^{4+}=2.50 \mathrm{mmol}$
This is the equivalence point.

$$
\begin{aligned}
& E=E_{C e^{4+13+}}^{0}-0.0592 \log \frac{\left[C e^{3+}\right]}{\left[C e^{4+}\right]} \\
& +E=E_{F^{3+12+}}^{0}-0.0592 \log \frac{\left[F e^{2+}\right]}{\left[F e^{3+}\right]}
\end{aligned}
$$

$$
2 E=E_{C e^{4+3+}}^{0}+E_{F e^{4}+2 t}^{0}-0.0592 \log \frac{\left[F e^{2+}\right]\left[C^{3+}\right]}{\left[F e^{3+}\right]\left[C e^{4+}\right]}
$$

Note that at the eq. pt.

$$
\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Ce}^{4+}\right] \&\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Ce}^{3+}\right]
$$

Therefore $\quad 2 E=E_{C e^{4+1 / 2+}}^{0}+E_{F^{3+12+}}^{0}-0.0592 \log (1)$

$$
\begin{aligned}
& 2 \mathrm{E}=1.72+0.771 \\
& \mathrm{E}=1.25 \mathrm{~V}
\end{aligned}
$$

C] initial mol of $\mathrm{Fe}^{2+}=50.00 \mathrm{~mL}^{*} 0.0500 \mathrm{M} \mathrm{Fe}^{2+}=2.50 \mathrm{mmol}$
added mol of $\mathrm{Ce}^{4+}=25.10 \mathrm{~mL}^{*} 0.100 \mathrm{M} \mathrm{Ce}^{4+}=2.51 \mathrm{mmol}$ Excess Ce^{4+} region

$$
\begin{array}{cccc}
\mathrm{Fe}^{2+}+ & \mathrm{Ce}^{4+}= & \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+} \\
2.50 & 2.51 & 0 & 0 \\
\hline-2.50 & -2.50 & +2.50 & +2.50 \\
0 & 0.01 & 2.50 & 2.50 \\
E=E_{C e^{4+13+}}^{0}- & 0.0592 \log \frac{\left[C e^{3+}\right]}{\left[C e^{4+}\right]}
\end{array}
$$

$$
E=1.72-0.0592 \log \frac{\frac{2.50 \mathrm{mmol}}{75.10 \mathrm{~mL}}}{\frac{0.01 \mathrm{mmol}}{75.10 \mathrm{~mL}}}=1.58 \mathrm{~V}
$$

${ }^{17} 18.00 \mathrm{~mL}^{*} 0.125 \mathrm{M} \mathrm{Sn}^{4+*}\left(2 \mathrm{~mol} \mathrm{Ti}^{2+} / \mathrm{mol} \mathrm{Sn}^{4+}\right)^{*} 1 / 0.100 \mathrm{M} \mathrm{Ti}^{2+}=45.0 \mathrm{~mL}$

$$
2\left[\mathrm{Sn}^{4+}\right]=\left[\mathrm{Ti}^{2+}\right] \& 2\left[\mathrm{Sn}^{2+}\right]=\left[\mathrm{Ti}^{3+}\right]
$$

18

$$
\begin{array}{lll}
\mathrm{Fe}^{2+}+\mathrm{Ce}^{4+}=\mathrm{Fe}^{3+}+\mathrm{Ce}^{3+} & \mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} & \mathrm{E}^{0}=0.767 \mathrm{~V} \\
& \mathrm{Ce}^{4+}+\mathrm{e}^{-}=\mathrm{Ce}^{3+} & \mathrm{E}^{0}=1.70 \mathrm{~V}
\end{array}
$$

At eq. pt $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Ce}^{4+}\right]$ and $\left[\mathrm{Fe}^{3+}\right]=\left[\mathrm{Ce}^{3+}\right]$

$$
\begin{aligned}
& \mathrm{E}=0.767-0.0592 \log \left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right] \\
& +\mathrm{E}=1.70-0.0592 \log \left[\mathrm{Ce}^{3+}\right] /\left[\mathrm{Ce}^{4+}\right] \\
& 2 \mathrm{E}=2.467-0.0592 \log \left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Ce}^{3+}\right] /\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{Ce}^{4+}\right]=2.467 \\
& \mathrm{E}=1.23 \mathrm{~V}
\end{aligned}
$$

