
7 – Potentiometry and Redox Titrations

1] A pH electrode responded with a potential of -433 mV in a solution of 0.0500 M KHP at pH 4.01

potassium hydrogen phthalate.

The electrode is rinsed and placed in an unknown solution and responds with a potential of - 692 mV. What is the pH of this unknown?¹

2] The response of a F⁻ selective electrode was found to be 0.355 V in standardize 1.00e-3 M solution. The response of this electrode in an unknown solution of F⁻ is 0.407 V. What is [F⁻] for that unknown solution? ²

3] The linear pH range for the average pH electrode is about: ³

- a) 0 to 14
- b) -5 to 18
- c) 2 to 10
- d) 1 to 14
- e) -10 to 10

4] A very common interference for the glass pH electrode is _____.⁴

5] A glass pH electrode was found to have a potential of -0.0412 V when used with a buffer of pH 6.00. An unknown solution was found to have a potential of -0.2004 V. What is the pH of this unknown solution? ⁵

6] A pH electrode responded with a voltage of 0.227 V in a standardized pH 7.000 solution. What is the pH of an unknown if that pH electrode responds with a voltage of 0.363 V? 6

7] A Mg²⁺ ISE was found to have a potential of 0.3674 V when in contact with a solution of 6.87e-3 M. That same electrode was to have a potential of 0.4464 V in contact with an unknown solution of Mg²⁺. What is the concentration of Mg²⁺ in that unknown?⁷

8] What is [Cl⁻] if the measured potential of the following cell is 0.321 V? $\,^8$

Pt(s)/1 M HCl(aq), 1.0 atm H₂// KCl(aq)/ AgCl(s)/ Ag (s)

$AgCl + e^{-} = Ag + Cl^{-}$ $E^{0} = 0.222 V$

9] The potential of an F⁻ ISE and calomel electrode was –0.1823 V for a 25.0 mL of sample. Addition of 5.00 mL of standard solution containing 5.63 x 10^{-5} M F⁻ caused the combination electrode to change to –0.2446 V. What is the concentration of F⁻ in that sample? ⁹

10] A pH electrode was found to have a potential of 0.241 V in a pH 4.01 buffer solution. A sample solution was found to have a potential of 0.252 V. What is the pH of that sample?¹⁰

11] A 20.00 mL solution of 0.1004 M KI was titrated with 0.0845 M AgNO₃.

- a) Calculate the cell voltage when V_{Ag+} = 15.00 mL. Assume an SHE cathode and a Ag/AgI indicator electrode.
- b) E_{cell} when $V_{Ag+} = 23.76$
- c) E_{cell} when $V_{Ag+} = 25.00$ mL ¹¹

 $Ag^+ + e^- = Ag(s)$ $E^0 = 0.799 V$ $Ksp(AgI) = 8.3e^{-17}$

12] KMnO₄ can be standardized with which of the following?¹²

- a) H₂O₂
- b) CH₄
- c) H₂O
- d) NaC₂O₄
- e) C₂H₄

13] Which is true of the equivalence point for the redox titration of Fe^{2+} with Ce^{4+} ? ¹³

- a) only $[Fe^{2+}] = [Fe^{3+}]$
- b) $[Fe^{2+}] = [Ce^{3+}]$ and $[Ce^{4+}] = [Fe^{3+}]$
- c) $[Fe^{2+}] = [Ce^{4+}]$ and $[Fe^{3+}] = [Ce^{3+}]$
- d) $[Fe^{2+}] = [Fe^{3+}]$ and $[Ce^{4+}] = [Ce^{3+}]$
- e) $[Fe^{2+}] = 0$

14] What are the final concentrations of each ion when 25.0-mL of 0.0500 M Ce⁴⁺ is mixed with 15.0-mL of 0.0500 M Cu⁺?

$$Ce^{4+} + e = Ce^{3+}$$
 $E^{0}_{red} = 1.44 V$
 $Cu^{2+} + e = Cu^{+}$ $E^{0}_{red} = 0.161 V$

What is the potential of the final solution when 25.0-mL of 0.0500 M Ce⁴⁺ is mixed with 15.0-mL of 0.0500 M Cu⁺? 14

15] Calculate the cell potential when 25.0 mL of 0.010 M Ce $^{4+}$ is added to 15.0 mL of 0.010 M Fe $^{2+}.\ ^{15}$

$Ce^{4+} + e^{-} = Ce^{3+}$	$E^0 = 1.70 V$
$Fe^{3+} + e^{-} = Fe^{2+}$	E ⁰ = 0.767 V

16] Derive the titration curve for the titration of 50.00 mL of 0.0500 M Fe²⁺ with 0.100 M Ce⁴⁺ using these volumes of titrant: 16

```
A] 5.00 mL of 0.100 M Ce<sup>4+</sup>
B] 25.00 mL
C] 25.10 mL
```

17] 18.00 mL of 0.125 M Sn⁴⁺ is titrated with 0.100 M Ti²⁺ in the following reaction:

 $Sn^{4+} + 2Ti^{2+} = Sn^{2+} + 2Ti^{3+}$

What is the added volume of titrant required to reach the equivalence point?

Which of the following is true at the equivalence point? ¹⁷

- a) $[Sn^{4+}] = [Ti^{2+}] \& [Sn^{2+}] = [Ti^{3+}]$
- b) $[Sn^{4+}] = [Ti^{2+}] = [Sn^{2+}] = [Ti^{3+}]$
- c) $4[Sn^{4+}] = 2[Ti^{2+}] \& 2[Sn^{2+}] = 3[Ti^{3+}]$
- d) $2[Sn^{4+}] = [Ti^{2+}] \& 2[Sn^{2+}] = [Ti^{3+}]$
- e) $[Sn^{4+}] = 2[Ti^{2+}] \& [Sn^{2+}] = 2[Ti^{3+}]$

18] Fe²⁺ was titrated with Ce⁴⁺, what is potential of a Pt wire electrode immersed in this solution at the equivalence point? Assume the reference potential electrode to be 0.000 V. 18

$$Fe^{3+} + e^- = Fe^{2+}$$
 $E^0 = 0.767 V$ $Ce^{4+} + e^- = Ce^{3+}$ $E^0 = 1.70 V$

Answers

¹ E = const - 0.0592 pH must find const. -0.433 V = const - 0.0592 (4.01) const = -0.196 V Now find unkn pH -0.692 = -0.196 – 0.0592 pH pH = 8.39 2 E = const – 0.0592 log [F⁻] 0.355 = const - 0.0592 log [1.00e-3] const = 0.177 $0.407 = 0.177 - 0.0592 \log [F^-]$ [F⁻] = 1.30e-4 M ³ 2 to 10 4 Na⁺ ⁵ E = const - 0.0592*pH -0.0412 = const - 0.0592*6.00 const = 0.314 -0.2004 = 0.314 – 0.0592*pH pH = 8.69 ⁶ E = const. – 0.0592 pH 0.227 = const. – 0.0592*7.000 const. = 0.6414 0.363 = 0.6414 - 0.0592 pH pH = 4.702 ⁷ E = const - 0.0592 / 2 * pMg 0.3674 = const - 0.0592 / 2 * (-log(6.87e-3)) const = 0.431 0.4464 = 0.431 - 0.0592 / 2 * pMg [Mg²⁺] = 3.31 M ⁸ Ecell = Ecath. – Eanod. = 0.197 – 0.000 V Ecath. = 0.321 = 0.222 – 0.0592 log [Cl⁻] [Cl⁻] = 0.0212 M

⁹ start with $E = int - 0.0592 \log[F^-]let x = unk [F^-]$

2 eqns: -0.1823 = int - 0.0592log(x)

 $\frac{-(-0.2446 = int - 0.0592log(x(25.00/30.00) + 5.63e-5(5.00/30.00))}{6.23e-2 = 0.0592log(0.833x+9.38e-6) - 0.0592log(x)}$ $1.052 = log[(0.833x+9.38e-6)/(x)] \qquad x = 8.97e-7 M$

¹⁰ 3.82

¹¹ a) Rxn: $Ag^+ + I^- = AgI(s)$

Initial I- = 20.00 mL * 0.1004 M = 2.008 mmol Added Ag⁺ = 15.00 mL * 0.0845 M = 1.27 mmol

Ag ⁺	+	I⁻ =	AgI(s)
1.27		2.008	
-1.27		-1.27	
0		0.740	

[I⁻] = 0.740 mmol / 35.00 mL = 0.0211 M

 $E = E^0 - 0.0592 \log 1/[Ag^+]$

Ksp = 8.3e-17 = [Ag⁺][I⁻]

[Ag⁺] = 8.3e-17 / 0.0211 = 3.9e-15 M

E = 0.799 – 0.0592 log {1 / 3.9e-15} = - 0.0538 V

b) added Ag⁺ = 23.76 mL * 0.0845 M = 2.008 mmol

This is the eq. pt.

Ag+	+	-	=	AgI(s)
0		0		
+x		+x		

$$x^2 = K_{sp} = 8.3e-17$$
 $x = 9.1e-9$
E = E⁰ - 0.0592 log 1/[Ag⁺]
E = 0.799 - 0.0592 log {1 / 9.1e-9} = 0.323 V

c) we are beyond the eq. pt.

excess Ag⁺ = (25.00 - 23.76) mL * 0.0845 M = 0.105 mmol [Ag⁺] = 0.105 mmol / 45.00 mL = 2.33e-3 M E = 0.799 - 0.0592 log {1 / 2.33e-3} = 0.643 V

¹² NaC₂O₄

¹³ $[Fe^{2+}] = [Ce^{4+}]$ and $[Fe^{3+}] = [Ce^{3+}]$

¹⁴ Reaction: $Ce^{4+} + Cu^{+} = Ce^{3+} + Cu^{2+}$

Initial mol Ce⁴⁺ = 25.0-mL*0.0500 M = 1.25 mmol

Initial mol Cu⁺ = 15.0-mL*0.0500 M = 0.75 mmol

More Ce⁴⁺ than Cu⁺ therefore

Mol Ce³⁺ = 0.75 mmol

[Ce³⁺] = 0.75 mmol / 40.0-mL = 1.9e-2 M

Mol $Ce^{4+} = 0.50 \text{ mmol}$

[Ce⁴⁺] = 0.50 mmol / 40.0-mL = 1.3e-2 M

Mol $Cu^+ = 0.00 \text{ mmol}$

 $[Cu^+] = 0.00$

Mol $Cu^{2+} = 0.75$ mmol

[Cu²⁺] = 0.75 mmol / 40.0-mL = 1.9e-2 M

E = 1.44 – 0.0592 log 1.9e-2 / 1.3e-2 = 1.43 V

¹⁵ Mol Ce⁴⁺ = 25.0 mL * 0.010 M = 0.25 mmol Mol Fe²⁺ = 15.0 mL * 0.010 M = 0.15 mmol

Excess Ce⁴⁺ region

 Ce^{4+} + Fe^{2+} = Fe^{3+} + Ce^{3+}

0.25 0.15 0 0

-0.15 -0.15 +0.15 +0.15

0.10 0 0.15 0.15

 $E = 1.70 - (0.0592) \log (0.15/0.10) = 1.69 V$

 16 A] 5.00 mL of 0.100 M $\rm Ce^{4+}$

initial mol of Fe^{2+} = 50.00 mL * 0.0500 M Fe^{2+} = 2.50 mmol

added mol of Ce^{4+} = 5.00 mL * 0.100 M Ce^{4+} = 0.500 mmol

```
Fe^{2+} + Ce^{4+} = Ce^{3+} + Fe^{3+}
2.50 0.500 0 0

-0.500 -0.500 +0.500 +0.500

2.00 0 0.500 0.500
```

Both Fe^{2+} and Fe^{3+} are present this is a metal buffer.

$$E = 0.771 - 0.0592 \log \frac{[Fe^{2+}]}{[Fe^{3+}]} = 0.771 - 0.0592 \log \frac{\frac{2.00mmol}{55.00mL}}{\frac{0.500}{55.00mL}}$$

E = 0.734 V

B] initial mol of Fe^{2+} = 50.00 mL * 0.0500 M Fe^{2+} = 2.50 mmol

added mol of Ce^{4+} = 25.00 mL * 0.100 M Ce^{4+} = 2.50 mmol

This is the equivalence point.

$$E = E_{Ce^{4+/3+}}^{0} - 0.0592 \log \frac{[Ce^{3+}]}{[Ce^{4+}]}$$
$$+ E = E_{Fe^{3+/2+}}^{0} - 0.0592 \log \frac{[Fe^{2+}]}{[Fe^{3+}]}$$
$$2E = E_{Ce^{4+/3+}}^{0} + E_{Fe^{3+/2+}}^{0} - 0.0592 \log \frac{[Fe^{2+}][Ce^{3+}]}{[Fe^{3+}][Ce^{4+}]}$$

Note that at the eq. pt.

$$[Fe^{2+}] = [Ce^{4+}] \& [Fe^{3+}] = [Ce^{3+}]$$

Therefore $2E = E_{Ce^{4+/3+}}^0 + E_{Fe^{3+/2+}}^0 - 0.0592\log(1)$

C] initial mol of Fe^{2+} = 50.00 mL * 0.0500 M Fe^{2+} = 2.50 mmol

added mol of Ce^{4+} = 25.10 mL * 0.100 M Ce^{4+} = 2.51 mmol

Excess Ce4+ region

$$Fe^{2+} + Ce^{4+} = Ce^{3+} + Fe^{3+}$$
2.50
2.51
0
0
-2.50
-2.50
+2.50
+2.50
+2.50
0
0.01
2.50
2.50
$$E = E^{0}_{Ce^{4+/3+}} - 0.0592 \log \frac{[Ce^{3+}]}{[Ce^{4+}]}$$

$$E = 1.72 - 0.0592 \log \frac{\frac{2.50 mmol}{75.10 mL}}{\frac{0.01 mmol}{75.10 mL}} = 1.58V$$

¹⁷ 18.00 mL*0.125 M Sn⁴⁺*(2mol Ti²⁺/mol Sn⁴⁺)*1/0.100 M Ti²⁺ = 45.0 mL

 $2[Sn^{4+}] = [Ti^{2+}] \& 2[Sn^{2+}] = [Ti^{3+}]$

¹⁸
$$Fe^{2+} + Ce^{4+} = Fe^{3+} + Ce^{3+}$$

 $Fe^{3+} + e^{-} = Fe^{2+}$
 $Ce^{4+} + e^{-} = Ce^{3+}$
 $E^{0} = 0.767 V$
 $E^{0} = 1.70 V$

At eq. pt $[Fe^{2+}] = [Ce^{4+}]$ and $[Fe^{3+}] = [Ce^{3+}]$

 $E = 0.767 - 0.0592 \log [Fe^{2+}] / [Fe^{3+}]$

 $\pm E = 1.70 - 0.0592 \log [Ce^{3+}] / [Ce^{4+}]$

2E = 2.467 – 0.0592 log [Fe²⁺] [Ce³⁺] / [Fe³⁺] [Ce⁴⁺] = 2.467 E = 1.23 V