When do the approximations fail?

$$
\begin{aligned}
& {\left[H^{+}\right] \approx \sqrt{\frac{K_{a 1} K_{a 2} F+K_{a 1} K_{w}}{K_{a 1}+F}}} \\
& 9-118^{\text {th }}, 11-116^{\text {th }} \\
& \mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)
\end{aligned} 9_{-128^{\text {th }}, 11-116^{\text {th }}}
$$

Now let's consider the case where $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ are close to each other, and F is small.

Assume 1.0e-3 M NaHM

$$
\left.\begin{array}{ll}
\mathrm{HM}^{-}=\mathrm{H}^{+}+\mathrm{M}^{2-} & \begin{array}{l}
\mathrm{K}_{\mathrm{a} 2}=8.9 \mathrm{e}-6
\end{array} \\
\mathrm{HM}^{-}+\mathrm{H}^{+}=\mathrm{H}_{2} \mathrm{M} & \mathrm{~K}_{\mathrm{a} 1}=4.0 \mathrm{e}-4
\end{array}\right] \begin{aligned}
& {\left[H^{+}\right] \approx \sqrt{\frac{K_{a 1} K_{a 2} F+K_{a 1} K_{w}}{K_{a 1}+F}}} \\
& =\sqrt{\frac{4.0 \times 10^{=4} \times 8.9 \times 10^{-6} \times 1.0 \times 10^{-3}+4.0 \times 10^{-4} \times 1.00 \times 10^{-14}}{4.0 \times 10^{-4}+1.0 \times 10^{-3}}} \\
& =5.04 \mathrm{e}-5 \quad \mathrm{pH}=4.297
\end{aligned}
$$

Now consider the MBE for this reaction:
$\mathrm{F}=1.0 \mathrm{e}-3=\left[\mathrm{H}_{2} \mathrm{M}\right]+\left[\mathrm{HM}^{-}\right]+\left[\mathrm{M}^{2-}\right]$

$\left[\mathrm{HM}^{-}\right]=1.0 \mathrm{e}-3-\left[\mathrm{H}_{2} \mathrm{M}\right]-\left[\mathrm{M}^{2-}\right]$

if $\left[\mathrm{H}_{2} \mathrm{M}\right]$ \& $\left[\mathrm{M}^{2-}\right]$ are significant we cannot make the assumption that

$$
\left[\mathrm{HM}^{-}\right]=1.0 \mathrm{e}-3=\mathrm{F}
$$

from $\quad \mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{HM}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{M}\right]$

$$
4.0 \mathrm{e}-4=1.0 \mathrm{e}-3 * 5.04 \mathrm{e}-5 /\left[\mathrm{H}_{2} \mathrm{M}\right]
$$

$\left[\mathrm{H}_{2} \mathrm{M}\right]=1.26 \mathrm{e}-4 \mathrm{M}$

$$
\mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{H}^{+}\right]\left[\mathrm{M}^{2-}\right] /\left[\mathrm{HM}^{-}\right]
$$

$$
8.9 e-6=5.04 \mathrm{e}-5^{*}\left[\mathrm{M}^{2}-\right] / 1.0 \mathrm{e}-3
$$

$$
\left[\mathrm{M}^{2}\right]=1.77 \mathrm{e}-4
$$

Back to the MBE
$[H M]=F-\left[H_{2} M\right]-\left[M^{2}\right]=1.00 e-3-1.26 e-4 \mathrm{M}-1.77 \mathrm{e}-4$
$\left[\mathrm{HM}^{-}\right]=6.97 \mathrm{e}-4$

Now plug this back into

$$
\begin{aligned}
& {\left[H^{+}\right] \approx \sqrt{\frac{K_{a 1} K_{a 2} F+K_{a 1} K_{w}}{K_{a 1}+F}}} \\
& =\sqrt{\frac{4.0 \times 10^{=4} \times 8.9 \times 10^{-6} \times 6.97 \times 10^{-4}+4.0 \times 10^{-4} \times 1.00 \times 10^{-14}}{4.0 \times 10^{-4}+6.97 \times 10^{-4}}} \\
& =4.76 \mathrm{e}-5 \mathrm{M}
\end{aligned}
$$

we will find that
$\left[\mathrm{H}_{2} \mathrm{M}\right]=8.29 \mathrm{e}-5 \mathrm{M}$
$\left[\mathrm{M}^{2-}\right]=1.30 \mathrm{e}-4 \mathrm{M}$
plug this back into the MBE
now $\left[\mathrm{HM}^{-}\right]=7.87 \mathrm{e}-4 \mathrm{M}$
repeat $3^{\text {rd }}$ time $\left[\mathrm{HM}^{-}\right]=4.86 \mathrm{e}-5$
$4^{\text {th }}$ time $\left[\mathrm{HM}^{-}\right]=4.83 \mathrm{e}-5$
$\mathrm{pH}=4.316$
with the $5.04 \mathrm{e}-5$ which we calculated before $\mathrm{pH}=4.297$
using $\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)=4.224$

